Platonic solids generate their 4-dimensional analogues

July 7, 2014
A 3D visualization of the 600-cell. Credit: P-P. Dechant

Alicia Boole Stott, the third daughter of mathematician George Boole, is probably best known for establishing the term "polytope" for a convex solid in four dimensions. Alicia was also a long time collaborator of HSM Coxeter, one of the greatest geometers of the 20th Century.

Platonic solids are regular bodies in three , such as the cube and icosahedron, and have been known for millennia. They feature prominently in the natural world wherever geometry and symmetry are important, for instance in lattices and quasi-crystals, as well as fullerenes and viruses (see the recent paper by Pierre-Philippe Dechant from Durham University and Reidun Twarock's group in York [Dechant et al. (2014). Acta Cryst. A70, 162-167; DOI: 10.1107/S2053273313034220].

Platonic solids have counterparts in four dimensions, and the Swiss mathematician Ludwig Schlaefli and Alicia Boole Stott showed that there are six of them, five of which have very strange symmetries. Stott had a unique intuition into the geometry of four dimensions, which she visualised via three-dimensional cross-sections.

A paper by Dechant published in Acta Crystallographica Section A: Foundations and Advances [Dechant (2013). Acta Cryst. A69, 592-602; DOI: 10.1107/S0108767313021442] shows how regular convex 4-polytopes, the analogues of the Platonic solids in four dimensions, can be constructed from three-dimensional considerations concerning the Platonic solids alone. The rotations of the Platonic solids can be interpreted naturally as four-dimensional objects, known as spinors.

These in turn generate symmetry (Coxeter) groups in four dimensions, and yield the analogues of the Platonic solids in four dimensions. In particular, this spinorial construction works for any three-dimensional symmetry (Coxeter) group, such that these cases explain all "exceptional objects" in four dimensions, i.e. those four-dimensional phenomena that do not have counterparts in arbitrary higher dimensions. This also has connections to other "exceptional phenomena" via Arnold's trinities and the McKay correspondence. This spinorial understanding of four-dimensional geometry explains for the first time the strange symmetries that these four dimensional objects have.

This connection between the geometry of four dimension and that of three dimensions via rotations/spinors has not been noticed for centuries despite many of the great mathematicians working on Platonic solids and their symmetries, and is very different from Alicia Boole Stott's way of visualizing three-dimensional sections. It sheds new light on both sides, from real three-dimensional systems with polyhedral symmetries such as (quasi) crystals, viruses and fullerenes to four-dimensional geometries arising for instance in Grand Unified Theories and string and M-theory.

Explore further: After 400 years, mathematicians find a new class of solid shapes

More information: 1. DOI: 10.1107/S2053273313034220
2. DOI: 10.1107/S0108767313021442

Related Stories

Spacetime May Have Fractal Properties on a Quantum Scale

March 25, 2009

( -- Usually, we think of spacetime as being four-dimensional, with three dimensions of space and one dimension of time. However, this Euclidean perspective is just one of many possible multi-dimensional varieties ...

Physicists investigate lower dimensions of the universe

March 18, 2011

( -- Several speculative theories in physics involve extra dimensions beyond our well-known four (which are broken down into three dimensions of space and one of time). Some theories have suggested 5, 10, 26, ...

Recommended for you

Probe for nanofibers has atom-scale sensitivity

January 20, 2017

Optical fibers are the backbone of modern communications, shuttling information from A to B through thin glass filaments as pulses of light. They are used extensively in telecommunications, allowing information to travel ...

Magnetic recording with light and no heat on garnet

January 19, 2017

A strong, short light pulse can record data on a magnetic layer of yttrium iron garnet doped with Co-ions. This was discovered by researchers from Radboud University in the Netherlands and Bialystok University in Poland. ...


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (3) Jul 07, 2014
Reminds me of the Saturn storm. Unexpected uniformity creating six sided rotations in the atmosphere. It makes me want to play with Magnetic fields and try to find out if they are being conducted through more then 3 dimensions and the odd pattern they create is due to matter only being able to interact with 3 dimensions of it.
3 / 5 (2) Jul 07, 2014
Reminds me of the Saturn storm. Unexpected uniformity creating six sided rotations in the atmosphere. It makes me want to play with Magnetic fields and try to find out if they are being conducted through more then 3 dimensions...

How would you know for sure that a magnetic line is conducted through more than three (spatial) dimensions? Seriously, if you can do that, I (and many others) would like to know how.
Whydening Gyre
1 / 5 (2) Jul 07, 2014
I'm with Tek on this one... How can there be more than 3 SPATIAL dimensions? "Time" is only a series of snapshots of the first 3. Anything after that would have to be "non-spatial", right?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.