Payback time for soil carbon from pasture conversion to sugarcane production

July 3, 2014

The reduction of soil carbon stock caused by the conversion of pasture areas into sugarcane plantations – a very common change in Brazil in recent years – may be offset within two or three years of cultivation.

The calculation appears in a study conducted by researchers at the Center for Nuclear Energy in Agriculture (CENA) of the University of São Paulo (USP) in collaboration with colleagues from the Luiz de Queiroz College of Agriculture (Esalq), also at USP. The study also included researchers from the Federal Institute of Alagoas (IFAL), the Brazilian Bioethanol Science and Technology Laboratory, the Institut de Recherche pour le Développement in France and Harvard University, Colorado State University and the Shell Technology Center Houston in the United States.

Findings from the project "Soil carbon stocks on land-use change process to production in South-Central Brazil," carried out with funding from FAPESP, were described in an article published in the online version of the journal Nature Climate Change.

"The study indicates that the balance of pasture areas converted for the cultivation of sugarcane designed for ethanol production is not as negative as originally estimated," said Carlos Clemente Cerri, project coordinator and researcher at CENA.

According to Cerri, soil from pasture areas has a whose volume varies only slightly over the years. However, the process of preparing this type of soil for conversion to sugarcane plantations causes part of the carbon stock to be emitted into the atmosphere as carbon dioxide (CO2).

In contrast, depending on the type of management, the introduction of sugarcane to pasture areas could compensate for, or even add to, the initial soil carbon stock when the organic matter and plant residue penetrate the ground.

Moreover, the ethanol produced from sugarcane grown in these areas over time ultimately offsets the CO2 emissions that occur during the conversion process because biofuel contributes toward reducing the burning of fossil fuel, explained the researcher.

The researchers conducted measurements and collected 6,000 soil samples from 135 regions in south-central Brazil, which is responsible for more than 90% of Brazil's sugarcane production.

At each of the sites, soil samples were collected from areas of sugarcane cultivation and from other areas to be used as reference. These reference areas included pastures, annual cropland (soybean, sorghum and corn) and Cerrado native vegetation.

According to the researchers, the study findings could contribute toward guiding expansion policies for sugarcane production aimed at producing ethanol to ensure the biofuel's sustainability - Ethanol demand in Brazil is expected to jump from an annual total of 25 million liters to 61.6 billion liters by 2021.

The professor indicated that to reach this number, the area of in Brazil would need to expand from the current 9.7 million hectares to 17 million hectares.

Cerri notes that among the options for reaching the target area, the priority for expansion of production is expected to be the conversion of degraded lands, principally those used as pastures, into sugarcane plantations.

Between 2000 and 2010, three million Brazilian hectares were converted to sugarcane cultivation areas. More than 70% of this land consisted of pastures, and 25% had been used for growing grains, said the study's researchers.

Explore further: A win-win-win solution for biofuel, climate, and biodiversity

Related Stories

Sugarcane cools climate

April 17, 2011

Brazilians are world leaders in using biofuels for gasoline. About a quarter of their automobile fuel consumption comes from sugarcane, which significantly reduces carbon dioxide emissions that otherwise would be emitted ...

Sugarcane bioethanol: Environmental implications

March 2, 2011

An article in the current issue of Global Change Biology Bioenergy assessed the net greenhouse gas savings of bioethanol from sugarcane as compared to the use of fossil fuels.

Recommended for you

New study finds nature is vital to beating climate change

October 16, 2017

Better stewardship of the land could have a bigger role in fighting climate change than previously thought, according to the most comprehensive assessment to date of how greenhouse gas emissions can be reduced and stored ...

Waves in lakes make waves in the Earth

October 16, 2017

Beneath the peaceful rolling waves of a lake is a rumble, imperceptible to all but seismometers, that ripples into the earth like the waves ripple along the shore.

Is it gonna blow? Measuring volcanic emissions from space

October 13, 2017

Late last month, a stratovolcano in Bali named Mount Agung began to smoke. Little earthquakes trembled beneath the mountain. Officials have since evacuated thousands of people to prevent what happened when Agung erupted in ...

Tracing subglacial water storage

October 13, 2017

Glaciers are essential to both human and animal health. In fact, 70 percent of the world's population consumes water that has some glacial input. It's important to understand how these icy giants operate, because they impact ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.