Solar moss shakes at 16,000 km an hour

June 23, 2014 by Robert Massey, Royal Astronomical Society

A High Resolution Coronal Imager (Hi-C) image of solar moss, as seen in Extreme Ultra-Violet light (a wavelength of 19.3 nm), where the observed material is at a temperature of between 1 and 2 million degrees Celsius. The region under observation is an area of high magnetic activity, with sunspots located underneath the coronal features. The moss structures are the brightest objects in the image and form the predominant component of the active region. However, the individual moss elements, with diameters of just 300 km, are relatively small compared to the size of the active region, which is around 300,000 km square. Credit: R. Morton / H. Morgan
( —Using a state-of-the-art ultraviolet camera, two astronomers from Northumbria University have obtained exceptionally sharp images of 'solar Moss', bright features on the Sun that may hold the key to a longstanding mystery. Dr James McLaughlin will present their findings at the National Astronomy Meeting (NAM 2014) from 23-26 June in Portsmouth.

The NASA-built High Resolution Coronal Imager (Hi-C) was first launched in July 2012 on a sounding rocket, operating for five minutes on its maiden flight. It observed the Sun at extreme ultraviolet wavelengths (far beyond the blue end of the visible spectrum) and in this light has produced the sharpest images of the outer atmosphere of the Sun - the corona - to date. Hi-C was designed to help scientists solve the of why the tenuous corona (with a typical temperature of 2 million degrees Celsius) is so much hotter than the surface of the Sun beneath (typically 5500 degrees Celsius).

Hi-C's camera has five times the number of pixels as the latest generation of ultra-high definition (UHD) televisions. Images from it are sharp enough to allow the fundamental structures of the corona, which are strongly shaped by magnetic fields, to be resolved. During its flight, the camera was centred on a region where the was particularly strong and where a phenomenon known as Moss is found. In the Hi-C images, the Moss appeared as some of the brightest features, forming net-like (reticulated) patches of emission.

The movie shows a 90,000 km squared region from the Hi-C Imager. The frames have been enhanced using a technique to bring out the small scale magnetic features. These features include the moss, which are the smallest and brightest structures seen in the image. The movie reveals that the moss is highly dynamic and constantly in motion. Careful observations of the moss reveal this motion is a violent swaying motion, moving with speeds close to 16,000 kilometres per hour (10,000 miles per hour). Credit: R. Morton / H. Morgan

Moss forms the lower sections of the hottest structures in the corona, the upper parts of which are invisible to the Hi-C camera as they predominantly emit X-rays. But studying its behaviour has allowed researchers to obtain key information on the underlying events that heat the corona. For example, there is significant evidence that the Sun's complex magnetic field, which pervades the entire solar atmosphere and provides the framework for its beautiful structures, plays a decisive role.

With his colleague Dr Richard Morton, Dr McLaughlin used the Hi-C data to measure the intrinsic properties of the Moss for the first time, discovering that its individual magnetic elements are highly dynamic; shaking back-and-forth at speeds of up to 16,000 kilometres (10,000 miles) per hour.

In the Hi-C images, a violent oscillating motion is seen, which can be interpreted in terms of swaying . Conceptually these are similar to those that are seen to move along a taut string or as an up-and-down wave on a rope. The magnetic waves are of great interest as they are particularly good at transporting energy along the magnetic structures and distributing it around the atmosphere of the Sun.

Dr McLaughlin said: "Our work shows that magnetic waves may play a key role in the heating of the corona. The short duration of the Hi-C data used in this pioneering study only gave us a tantalising glimpse of the hidden secrets of the Sun. They show the need for future instruments that will allow us to truly understand these intriguing phenomena."

Explore further: Solving a mystery of the Sun's corona

Related Stories

Solving a mystery of the Sun's corona

February 4, 2013

(—The corona of the sun is the hot (over a million kelvin), gaseous outer region of its atmosphere. The corona is threaded by intense magnetic fields that extend upwards from the surface in braids that are twisted ...

Puffing Sun gives birth to reluctant eruption

June 23, 2014

( —A suite of Sun-gazing spacecraft, SOHO, STEREO and Solar Dynamics Observatory (SDO), have spotted an unusual series of eruptions in which a series of fast 'puffs' force the slow ejection of a massive burst of ...

New research brings light to star mystery

February 4, 2013

(—Scientists at Northumbria University have begun to unlock the mystery of why the outer edge of the Sun is much hotter than its surface for the first time.

Recommended for you

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

3 / 5 (2) Jun 23, 2014
Awesome picture!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.