Solving a mystery of the Sun's corona

February 4, 2013
The solar corona and several of its regions, as seen in the extreme ultraviolet by the Hi-C rocket, which was launched last July. Analysis of Hi-C images provides convincing evidence that braided magnetic field effects heat the gas to temperatures of millions of kelvin. Credit: NASA and Hi-C

(Phys.org)—The corona of the sun is the hot (over a million kelvin), gaseous outer region of its atmosphere. The corona is threaded by intense magnetic fields that extend upwards from the surface in braids that are twisted and sheared by the convective stirrings of the underlying dense atmosphere. Understanding the corona and its physical processes is essential to the development of a long-range space weather prediction capability.

The mechanisms that the corona are poorly understood, but are thought to be of two kinds. The first mechanism is heating from the solar interior carried to the surface by waves in the hot gas. It is thought that this "wave heating" can raise the temperature of the corona to about 1.5 million kelvin, its temperature in its quiescent phase. The active Sun, however, has sunspots and regions that can reach temperatures up to four million kelvin. This second stage of heating has been attributed to the energetic unraveling of braids of powerful magnetic fields generated by the movement of charged particles in the corona. Because proof of this mechanism relies in part on images capable of seeing these braids at work, this explanation has been difficult to verify.

CfA astronomers Leon Golub, Kelly Korreck, Mark Weber, and Patrick McCauley were key members of the team that has resolved this long-standing puzzle. The CfA scientists, in collaboration with colleagues at NASA's Marshall Space Flight Center, produced the finest mirrors for ever made for a and launched them in a telescope on a sub-orbital rocket, the Hi-C mission, last July. The rocket flight lasted only 10 minutes, but the high resolution images it obtained in that time enabled the scientists to directly observe the hypothetical magnetic braid activity.

Writing in the last issue of the journal Nature, the astronomers report that the sizes and activity of the braids they observe are in agreement with the properties needed for the magnetic heating theory to be correct. Although the short mission duration still leaves many unanswered questions about coronal heating, the new results are a key breakthrough in understanding the solar and its behavior.

Explore further: Understanding coronal mass ejections

Related Stories

Understanding coronal mass ejections

October 29, 2010

(PhysOrg.com) -- The corona of the sun is the hot (over a million kelvin), gaseous outer region of its atmosphere. The corona is threaded by intense magnetic fields that extend upwards from the surface in loops that are twisted ...

Space instrument adds big piece to the solar corona puzzle

January 23, 2013

(Phys.org)—The Sun's visible surface, or photosphere, is 10,000 degrees Fahrenheit. As you move outward from it, you pass through a tenuous layer of hot, ionized gas or plasma called the corona. The corona is familiar to ...

Hi-C to investigate activity in solar atmosphere

June 22, 2012

(Phys.org) -- NASA's Marshall Space Flight Center in Huntsville, Ala. is leading an international effort to develop and launch the High Resolution Coronal Imager, or Hi-C, on a sounding rocket from the White Sands Missile ...

Solar corona revealed in super-high-definition

July 20, 2012

Today, astronomers are releasing the highest-resolution images ever taken of the Sun's corona, or million-degree outer atmosphere, in an extreme-ultraviolet wavelength of light. The 16-megapixel images were captured by NASA's ...

A New View of Coronal Waves

December 11, 2009

(PhysOrg.com) -- The corona is the hot outer region of the sun's atmosphere. The corona is threaded by magnetic fields that loop and twist upwards from the sun's surface, driven by motions of its dense atmosphere.

Skeleton Of Sun's Atmosphere Reveals Its True Nature

April 16, 2007

The Sun's outer atmosphere or corona is incredibly complex, as shown in observations from space. It is also extremely hot, with a temperature of over a million degrees by comparison with that of the Sun's surface of only ...

Recommended for you

SpaceX to launch classified US govt payload Sunday

April 29, 2017

SpaceX on Sunday is scheduled to make its first military launch, with a classified payload for the National Reconnaissance Office, which makes and operates spy satellites for the United States.

Is dark matter 'fuzzy'?

April 28, 2017

Astronomers have used data from NASA's Chandra X-ray Observatory to study the properties of dark matter, the mysterious, invisible substance that makes up a majority of matter in the universe. The study, which involves 13 ...

Hubble's bright shining lizard star

April 28, 2017

In space, being outshone is an occupational hazard. This NASA/ESA Hubble Space Telescope image captures a galaxy named NGC 7250. Despite being remarkable in its own right—it has bright bursts of star formation and recorded ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

cantdrive85
1 / 5 (3) Feb 04, 2013
What is a mystery for the standard model is expected for the "Electric Sun" model, such is the case with many aspects of plasma cosmology vs the standard model. What should be obvious is totally ignored due to the ignorance of plasma physics by those charged with studying it.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.