New research shows how water is transferred into our planet's interior

June 19, 2014, Insight Publishers
Fig. 1

The Earth's interior could contain more than three times the amount of water in all our oceans combined, existing within the structures of silicate materials that are stable at the prevailing conditions deep inside the Earth. New research from ETH Zürich has helped to elucidate exactly how deep water gets transported into the Earth's interior.

Water is fundamental for processes that occur at the Earth's surface, but also plays a critical role in many geological processes occurring deep inside of it that shape its evolution. Small amounts of water incorporated into the structure of minerals have a major effect on their stability, behaviour and phase equilibria. Global processes such as mantle convection, plate tectonics and naturally occurring catastrophic events such as earthquakes and volcanic eruptions are strongly influenced by the activity of this water.

Water is reintroduced into the Earth's interior by hydrated tectonic (oceanic) plates that return into the mantle in subduction zones, and released when hydrous minerals/phases are decomposed due to the and temperature of the Earth's interior. Much of this water returns to the surface by volcanism, but a large fraction of is retained in newly formed high pressure hydrous phases that are stable at much higher depths, opening the possibility for water to recirculate deeper into the mantle beyond 400 km depth. However, the exact amount of water stored in the solid Earth, and how (and how much) of this water is recycled back to the surface, remains obscure.

Carmen Sanchez-Valle, a former assistant professor of experimental geochemistry and mineral physics at the Swiss Federal Institute of Technology, Zurich, has worked with her team that includes graduate student Angelika Rosa to develop several novel analytical techniques to investigate this environment. "Through learning about the Earth's interior, we become more aware of what actually occurs on the surface," she explains. A group of dense hydrous silicate phases discovered in laboratory experiments in the mid-1960s, the so-called alphabet phases (phase A, E, D and superhydrous B), are plausible candidates for the transport of water at depth due to the large stability field. The physical and chemical properties of these materials, obtained through studies, are fundamental to revealing the deep water cycle.

Fig. 2

A device called a diamond‐anvil cell (Fig 1) is the primary tool used by researchers to replicate extreme that exist at the Earth's interior, and explore how hydrous phases behave. By powerfully compressing micrometric-size samples between the flat surfaces of quarter‐carat diamonds, the apparatus authentically simulates pressure conditions down to the Earth's core. To recreate the infernal temperatures present in these realms, heating elements or infrared lasers are introduced to the tests. "Crucially, the diamonds are transparent, which means that brilliant x-rays produced by and laser analysis can be used to probe the physical and chemical state of samples while they are submitted to extreme pressure and temperature conditions," adds Sanchez-Valle. "These experimental simulations provide us with a virtual window into the deep Earth."

Fortunately, seismic waves can be simulated within the team's facilities. Using a unique laser spectroscopy called Brillouin scattering spectroscopy (Fig 2), the speed of seismic waves and elasticity of materials can be monitored under pressure, divulging their water-bearing qualities. The team also use the brilliant X-rays produced at synchrotron sources to monitor the development of textures in hydrous materials deformed at conditions that mimic those of subducting slabs penetrating in the lower mantle.

"Our combined studies on hydrous phases has allowed us for the first time to interpret seismic anomalies observed in deep subducted slabs," says Sanchez-Valle. "The work has shown that hydrous slabs penetrating below the transition zone in areas such as Tonga could contain at least 1.2% in weight of water bound to dense hydrous phase D. The dehydration of phase D at greater depths is a potential mechanism to activate very rare (and less damaging) deep focused earthquakes, and the released into the lower mantle has important consequences for the geodynamical and geochemical evolution of the deep Earth."

Explore further: New evidence for oceans of water deep in the Earth

More information: The complete article is available online:

Related Stories

New evidence for oceans of water deep in the Earth

June 12, 2014

Researchers from Northwestern University and the University of New Mexico report evidence for potentially oceans worth of water deep beneath the United States. Though not in the familiar liquid form—the ingredients for ...

Is there an ocean beneath our feet?

January 27, 2014

( —Scientists at the University of Liverpool have shown that deep sea fault zones could transport much larger amounts of water from the Earth's oceans to the upper mantle than previously thought.

Our planet's most abundant mineral now has a name

June 18, 2014

Deep below the earth's surface lies a thick, rocky layer called the mantle, which makes up the majority of our planet's volume. For decades, scientists have known that most of the lower mantle is a silicate mineral with a ...

Earth's lower mantle chemistry breakthrough

May 22, 2014

Breaking research news from a team of scientists led by Carnegie's Ho-kwang "Dave" Mao reveals that the composition of the Earth's lower mantle may be significantly different than previously thought. These results are to ...

New insight into the temperature of deep Earth

May 22, 2014

Scientists from the Magma and Volcanoes Laboratory (CNRS) and the European Synchrotron, the ESRF, have recreated the extreme conditions 600 to 2900 km below the Earth's surface to investigate the melting of basalt in the ...

Recommended for you

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

OSIRIS-REx reveals asteroid Bennu has big surprises

March 19, 2019

A NASA spacecraft that will return a sample of a near-Earth asteroid named Bennu to Earth in 2023 made the first-ever close-up observations of particle plumes erupting from an asteroid's surface. Bennu also revealed itself ...

The powerful meteor that no one saw (except satellites)

March 19, 2019

At precisely 11:48 am on December 18, 2018, a large space rock heading straight for Earth at a speed of 19 miles per second exploded into a vast ball of fire as it entered the atmosphere, 15.9 miles above the Bering Sea.

Revealing the rules behind virus scaffold construction

March 19, 2019

A team of researchers including Northwestern Engineering faculty has expanded the understanding of how virus shells self-assemble, an important step toward developing techniques that use viruses as vehicles to deliver targeted ...

Levitating objects with light

March 19, 2019

Researchers at Caltech have designed a way to levitate and propel objects using only light, by creating specific nanoscale patterning on the objects' surfaces.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.