Prize-winning microscopy image lights up Times Square in New York

May 21, 2014
Microscopy image of a developing mouse sperm cell taken by A*STAR scientists
The prize-winning image of a developing mouse sperm cell, captured by A*STAR researchers Graham Wright and Henning Horn. The locations of DNA (blue), KASH5 protein (green) and SCP3 protein (red) were revealed using immunofluorescence staining. Credit: A*STAR Institute of Medical Biology

Science and show business may sound like an unusual combination, but advances in technology mean that scientists can now capture dramatic images of their research that easily match the glamor of Broadway. A striking image captured by Graham Wright and Henning Horn from the A*STAR Institute of Medical Biology (IMB) in Singapore during their ground-breaking investigations into fertility was the regional winner in the microscopy category of the 2013 GE Healthcare Life Sciences Cell Imaging Competition. Fittingly, together with the other prize-winning images, the image was recently displayed on a large, high-resolution screen in New York's iconic Times Square.

"The image is of a mouse sperm cell, also known as a spermatocyte, highlighted with three fluorescent labels that show DNA (blue), KASH5 protein (green) and the SCP3 protein (red), which is required for the pairing of chromosomes," explains Wright. "This image was a particularly striking example when we captured it—the orientation of the proteins we were studying and the two sperm cells stained in blue on both sides made it aesthetically pleasing."

The image was the result of a collaboration between Wright, head of the IMB Microscopy Unit (IMU), Horn, a senior research fellow, and the research teams of Colin Stewart and Brian Burke, also of the IMB, who discovered that the KASH5 protein is vital for successful chromosomal movements during meiosis—the division of cells necessary for successful sexual reproduction1. Sperm and eggs need accurate chromosome pairing if they are to mature correctly, so without chromosomal activity guided by the KASH5 protein, fertility is adversely affected.

The researchers collected the image on a GE DeltaVision OMX microscope, which enables biological samples to be imaged in superresolution in three dimensions. Wright and Horn spent time perfecting their sample preparation and honing the settings on the microscope to acquire their high-resolution prize-winning image. "The increased resolution we were able to achieve allowed us to visualize chromosome pairing events in spermatocytes."

"Paired chromosomes—the paired red lines in the image—are not resolved by conventional light microscopy techniques," explains Horn. "The ability to determine whether chromosomes are paired or not was critical for understanding the function of KASH5 in meiosis, so images such as this really can change how we understand diseases and problems such as infertility."

At the IMB, research is focused on understanding a number of human diseases and medical conditions and providing improved treatments. Researchers have direct access to state-of-the-art equipment, including high-end microscopes, through core technology platforms such as the IMU.

By gaining further insight into the processes behind meiosis using these advanced microscopy techniques, Wright and Horn hope that their work will shed light on a range of biological processes, including those underpinning human fertility problems.

"Microscopy is usually used to visualize and analyze how proteins, cells and tissues are organized and how they behave," states Wright. "But with fluorescent dyes and live-cell imaging techniques, we can find where proteins are located and follow what they do over time. This can give us excellent insights into the function of a and what goes wrong with it in the diseases we study."

Explore further: First vital step in fertilization between sperm and egg discovered

More information: Horn, H. F., Kim, D. I., Wright, G. D., Wong, E. S. M., Stewart, C. L. et al. "A mammalian KASH domain protein coupling meiotic chromosomes to the cytoskeleton." The Journal of Cell Biology 202, 1023–1039 (2013).

Related Stories

Watching molecule movements in live cells

July 24, 2013

The newly developed STED-RICS microscopy method records rapid movements of molecules in live samples. By combining raster image correlation spectroscopy (RICS) with STED fluorescence microscopy, researchers of Karlsruhe Institute ...

Helium raises resolution of whole cell imaging

October 3, 2011

The ability to obtain an accurate three-dimensional image of an intact cell is critical for unraveling the mysteries of cellular structure and function. However, for many years, tiny structures buried deep inside cells have ...

Clues to chromosome crossovers

February 13, 2013

Neil Hunter's laboratory in the UC Davis College of Biological Sciences has placed another piece in the puzzle of how sexual reproduction shuffles genes while making sure sperm and eggs get the right number of chromosomes.

Researchers identify traffic cop mechanism for meiosis

December 12, 2013

Researchers at NYU and the Whitehead Institute for Biomedical Research have identified the mechanism that plays "traffic cop" in meiosis—the process of cell division required in reproduction. Their findings, which appear ...

Recommended for you

Single-molecule dissection of developmental gene control

October 23, 2017

Scientists at EPFL and Max Plank have made significant discoveries on how developmental genes are controlled by the methyltransferase enzyme PRC2. The study is published in Nature Structural & Molecular Biology.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.