Star-quakes reveal content of stars which are hotter and more massive than the Sun

April 2, 2014
Left: internal structure of a delta-Scuti star, which shows a nucleus, an extended radiative layer and a thin convective layer (IAA). Right: different stellar oscillation modes. Credit: Univ. Birmingham

To determine the mass and size of planets found around other stars or to date stellar populations in order to limit the number of cosmological models, among other things, it is essential know what goes on inside a star. The only gateway we have to that stellar interior is the study of stellar oscillations, or asteroseismology. Now, for the first time, a study led by researchers from the Institute of Astrophysics of Andalusia (IAA-CSIC) has shown the validity of this tool for the study of stars that are hotter and more massive than the sun.

"Thanks to asteroseismology we know precisely the internal structure, mass, radius, rotation and evolution of solar type stars, but we had never been able to apply this tool efficiently to the study of hotter and more ," says Juan Carlos Suárez, researcher at the Institute of Astrophysics of Andalusia (IAA-CSIC).

In some sense, stellar seismology conceives of stars as resonating cavities where the movement of gas generates sound waves. Many of these sound waves tend to fade out, but if they find any mechanism to sustain them, they will reach an equilibrium on the surface of the star and deform it, producing different modes of oscillation (which can be observed as changes in temperature and glow).

As they go through different parts of the star, the modes of oscillation are affected and, depending on where they went, will take one form or another on the surface. "Some modes are more sensitive to what is happening inside, others to the size of the nucleus. All of them are influenced by chemical composition, and age of the star. We use mathematical models to determine what type of structure and characteristics are behind the modes that are observed," explains Juan Carlos Suárez (IAA-CSIC)

A great leap forward for stellar physics

The study has centered on a type of star known as delta-Scuti, whose mass fluctuates between 1.5 and 2.5 times that of the sun and which rotates so fast that it can be deformed (instead of being spherical it tends to flatten out). Due to its rapid rotation its oscillation spectrum is difficult to interpret, and although regular patterns had been detected earlier, its physical properties were unknown.

However, recent results have revealed a relationship between certain oscillation patterns of delta-Scuti stars and their mean density very similar to that which exists in solar type stars. "This work is an enormous leap forward inasfar as it shows that we can know stars up to four times more massive than the sun with the same level of precision as that of solar type stars," says Juan Carlos Suárez.

To know the mean density of a star allows us not only to determine its mass and radius with precision but also to grasp precisely what model will best yield other essential characteristics of the star, which in turn are indispensable to determine the mass, the radius or the age of extrasolar planets—planets that orbit around different stars than the sun.

Star-quakes reveal content of stars which are hotter and more massive than the Sun
GIF animations of four (of over a million) oscillation modes that exist on the Sun. Credit: David Guenther, Saint Mary´s University

Star-quakes reveal content of stars which are hotter and more massive than the Sun
"Planets orbiting around stars which are more massive than the sun are being discovered ever more frequently, and these new methods will make it possible to determine their characteristics. This adds value to the PLATO (ESA) mission, which will describe planetary systems and contribute precious information to understand their origin and evolution, which in turn is essential for the search of extraterrestrial life", says Juan Carlos Suárez, member of the PLATO mission board.

These results were reached using a tool named TOUCAN, an asteroseismology model management tool developed by researchers from the Institute of Astrophysics of Andalusia and the Spanish Virtual Observatory (CAB-INTA-CSIC). TOUCAN makes it possible to compare millions of models and to carry out statistical studies of different parameters, with the advantage that it is part of the Virtual Observatory, so that all the models are homogenized.

Explore further: GOSSS catalogue clears the way for study of massive stars

More information: J.C. Suárez et al. "Measuring mean densities of delta Scuti stars with asteroseismology." Theoretical properties of large separations using TOUCAN. Astronomy & Astrophysics.

Related Stories

GOSSS catalogue clears the way for study of massive stars

March 6, 2014

Only one in two million stars in our galactic environment is of type O, a category that includes stars with anywhere between sixteen and more than one hundred solar masses, and luminosities millions of times greater than ...

First planet found around solar twin in star cluster

January 15, 2014

Astronomers have used ESO's HARPS planet hunter in Chile, along with other telescopes around the world, to discover three planets orbiting stars in the cluster Messier 67. Although more than one thousand planets outside the ...

Survivor of stellar collision is new type of pulsating star

June 28, 2013

A team of astronomers from the UK, Germany and Spain have observed the remnant of a stellar collision and discovered that its brightness varies in a way not seen before on this rare type of star. By analysing the patterns ...

UK joins Europe's PLATO planet-hunting mission

March 11, 2014

Planned for launch by 2024, the planet hunting mission will see strong involvement from several UK institutes, with Professor Don Pollacco from the University of Warwick providing UK scientific leadership for the European ...

Recommended for you

Recurring martian streaks: flowing sand, not water?

November 20, 2017

Dark features on Mars previously considered evidence for subsurface flowing of water are interpreted by new research as granular flows, where grains of sand and dust slip downhill to make dark streaks, rather than the ground ...

Image: Hubble's cosmic search for a missing arm

November 20, 2017

This new picture of the week, taken by the NASA/ESA Hubble Space Telescope, shows the dwarf galaxy NGC 4625, located about 30 million light-years away in the constellation of Canes Venatici (The Hunting Dogs). The image, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.