The complex physical mechanisms in real biomolecule motors

March 21, 2014, University of Electro Communications
The complex physical mechanisms in real biomolecule motors
A computer simulation of the motor-rail system. The walking mechanism is explained by the alternation between the bubble and the liquid state.

Computer simulations of relatively simple models provide clues to the complex physical mechanisms at work in real biomolecule motors.

The asymmetric Brownian ratchet model describes a motor particle moving on a rail (for example a protein like kinesin walking a on a microtubule). There are two possible states: in one the particle moves in a random walk along the rail; in the other it feels the asymmetric potential from the rail. Alternating between these two states leads to a directed movement.

A collaboration including the University of Electro-Communications, Keio University, RIKEN, University of Fukui and University of Nebraska-Lincoln led by Noriyoshi Arai previously suggested that the transition between the two states is caused by . Arai and co-workers have now refined their model including a more realistic temperature-controlled switching mechanism.

In their model the two states of the asymmetric Brownian ratchet are a hydrophobic 'bubble state' and a hydrophilic 'liquid state'. In the former, the motor is close to the rail, bubbles form due to the and the motor feels an asymmetric potential. In the latter, the motor is far from the rail and due to thermal fluctuations it moves randomly along it. The switching between the two is caused by the change of hydrophobic/hydrophilic parameter of the motor controlled by the temperature of the motor itself.

As indicate, the mechanism proposed by Arai and collaborators could lead to very efficient walking depending on the material used for the motor, for example thermosensitive polymers.

Explore further: Experiments show hypothesis of microtubule steering accurate

More information: Noriyoshi Arai, et al. "Understanding Molecular Motor Walking along a Microtubule: A Themosensitive Asymmetric Brownian Motor Driven by Bubble Formation." J. Am. Chem. Soc. 135, 8616−8624, (2013).

Related Stories

Experiments show hypothesis of microtubule steering accurate

January 23, 2014

Tiny protein motors in cells can steer microtubules in the right direction through branching nerve cell structures, according to Penn State researchers who used laboratory experiments to test a model of how these cellular ...

Recommended for you

Bio-renewable process could help 'green' plastic

January 19, 2018

When John Wesley Hyatt patented the first industrial plastic in 1869, his intention was to create an alternative to the elephant tusk ivory used to make piano keys. But this early plastic also sparked a revolution in the ...

Simulations show how atoms behave inside self-healing cement

January 19, 2018

Researchers at Pacific Northwest National Laboratory (PNNL) have developed a self-healing cement that could repair itself in as little as a few hours. Wellbore cement for geothermal applications has a life-span of only 30 ...

Looking to the sun to create hydrogen fuel

January 18, 2018

When Lawrence Livermore scientist Tadashi Ogitsu leased a hydrogen fuel-cell car in 2017, he knew that his daily commute would change forever. There are no greenhouse gases that come out of the tailpipe, just a bit of water ...

A new polymer raises the bar for lithium-sulfur batteries

January 18, 2018

Lithium-sulfur batteries are promising candidates for replacing common lithium-ion batteries in electric vehicles since they are cheaper, weigh less, and can store nearly double the energy for the same mass. However, lithium-sulfur ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.