X-ray diffraction technique 'maps' strain and crack propagation in metallic tubing

January 22, 2014
Image caption: This series of images show the x-ray maps of a crack along the surface of Alloy 500 tubing. In (a), the absorption map shows parts of the physical crack; (b) shows the grain orientations along the crack; (c) shows compressive stresses in blue as a result of the crack opening; (d) shows the crack's propagation path on the tubing via scanning electron micrograph, along with a "trench" created by ion beam for easier imaging of a crack cross section; (e) shows the crack opening. Credit: University of Western Ontario, London, ON, N6A 5B7, Canada

A team of researchers exploring the intergranular stress corrosion cracking of a type of metallic tubing used within nuclear power plants has developed a technique to both map and predict its propagation.

Metallic tubing plays a key role in transporting water coolant to steam generators within . But for reasons that remain elusive, in this application, Alloy 600, a high-strength nickel-based alloy widely used and considered robust in other high-performance situations, is susceptible to costly failure caused by intergranular stress corrosion cracking.

A team of researchers delved into this longstanding technical issue by using an x-ray diffraction technique to measure structural changes within microscopic areas on the metallic tubing, which they describe in a paper in Corrosion journal.

"Failures of Alloy 600 are preceded by mechanical strains, but the location of this type of strain is often a tiny area only a few microns wide, which has been mechanically damaged by a physical process like a micro scratch or a chemical process such as rapid local corrosion," explains Stewart McIntyre, co-author of the paper and an emeritus professor in the Department of Chemistry at the University of Western Ontario in London, Canada.

It's important to "identify the very tiny areas on samples that are under local tensile stresses—because these stresses can pull a material apart at the boundary between two metal grains," McIntyre says.

To zero in on these areas under local tensile stresses, McIntyre and colleagues turned to a very small and coherent x-ray beam of the sort produced in synchrotrons, such as the Advanced Light Source at Lawrence Berkeley National Laboratory.

"With such facilities we can 'map' the location of strains to determine whether their direction is likely to result in crack propagation in the future," says McIntyre.

Next up? The researchers plan to study the effects of external stresses of different magnitudes imposed on boiler tubing made from Alloy 600, as well as its new replacement, Alloy 690.

Explore further: Helping materials handle extreme stress

More information: The paper, "Mapping of Microscopic Strain Distributions in an Alloy 600 C-Ring After Application of Hoop Stresses and Stress Corrosion Cracking," written by N.S. McIntyre, J. Ulagnathan, T. Simpson, J. Qin, N. Sherry, M. Bauer, A.G. Carcea, R.C. Newman, M. Kunz, and N. Tamura, appears in NACE International's journal, Corrosion, Jan. 2014, Vol. 70, No. 1, pp. 66-73. See: dx.doi.org/10.5006/1006

Related Stories

Helping materials handle extreme stress

October 11, 2011

Important pressurized water nuclear reactor components are being made from a nickel-base alloy that contains twice the amount of chromium as the material previously used. The new alloy, called alloy 690, performs better, ...

Data miners dig for corrosion resistance

April 20, 2011

(PhysOrg.com) -- A better understanding of corrosion resistance may be possible using a data-mining tool, according to Penn State material scientists. This tool may also aid research in other areas where massive amounts of ...

Recommended for you

Single-photon detector can count to four

December 15, 2017

Engineers have shown that a widely used method of detecting single photons can also count the presence of at least four photons at a time. The researchers say this discovery will unlock new capabilities in physics labs working ...

Complete design of a silicon quantum computer chip unveiled

December 15, 2017

Research teams all over the world are exploring different ways to design a working computing chip that can integrate quantum interactions. Now, UNSW engineers believe they have cracked the problem, reimagining the silicon ...

A shoe-box-sized chemical detector

December 15, 2017

A chemical sensor prototype developed at the University of Michigan will be able to detect "single-fingerprint quantities" of substances from a distance of more than 100 feet away, and its developers are working to shrink ...

Real-time observation of collective quantum modes

December 15, 2017

A cylindrical rod is rotationally symmetric - after any arbitrary rotation around its axis it always looks the same. If an increasingly large force is applied to it in the longitudinal direction, however, it will eventually ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.