Study: New nanomanufacturing processes needed

December 4, 2013

If the promise of nanotechnology is to be fulfilled, then research programs must leapfrog to new nanomanufacturing processes. That's the conclusion of a review of the current state of nanoscience and nanotechnology to be published in the International Journal of Nanomanufacturing.

Khershed Cooper of the Materials Science and Technology Division, at the Naval Research Laboratory, in Washington, DC and Ralph Wachter of the Division of Computer and Network Systems, at the National Science Foundation, in Arlington, Virginia, USA, explain how research in nanoscience and the emerging applications in have led to new understanding of the properties of matter as well producing many , structures and devices.

Indeed, the list of possible applications of nanotechnology continues to grow: water filtration and purification, engineered with modified mechanical properties controlled electrical behaviour and corrosion resistance. There are nano-based being used as sealants, anti-fogging and abrasion resistant coatings for glass and other materials, conductive resins, paints and electromagnetic shielding as well as sensors, self-healing materials, super-hydrophobic surfaces, solar cells and ultracapacitors for energy storage as well as materials for armour and protection against bullets and bombs.

The team's own research has focused on developing tools and techniques to make scalable processes for nanomanufacturing. They are investigating massively parallel techniques, masks and maskless processes for making 3D structures with nanoscopic features. However, they also suggest that several obstacles must be surmounted for nanotechnology to thrive as a future industrial endeavour. In particular, the team believes that research and development should be directed in the following areas:

  • Multi-scale design, modelling and simulation of nanosystems.
  • Component integration within large-scale systems.
  • Integration across physical scales.
  • Qualification, certification, verification and validation.
  • Cyber-enabled manufacturing systems.

"Looking ahead, nanotechnology is slated to move into complex, multi-functional, multi-component nanosystems, e.g., nano-machines and nano-robots," the team concludes. "These nanosystems will be adaptive, responsive to external stimuli, biomimetic, intelligent, smart and autonomous. Nanomanufacturing R&D will be needed to develop the knowledge base for the reliable production of these complex nanosystems."

Explore further: Carving at the nanoscale

More information: "Nanomanufacturing: path to implementing nanotechnology" in Int. J. Nanomanufacturing, 2013, 9, 540-554

Related Stories

Carving at the nanoscale

December 8, 2011

Researchers at the Catalan Institute of Nanotechnology have successfully demonstrated a new method for producing a wide variety of complex hollow nanoparticles. The work, published this week in Science, applies well known ...

Entering a new dimension: 4-D printing

September 30, 2013

Imagine an automobile coating that changes its structure to adapt to a humid environment or a salt-covered road, better protecting the car from corrosion. Or consider a soldier's uniform that could alter its camouflage or ...

Measuring the electrical properties of nano-crystals

October 20, 2010

The UK's National Physical Laboratory (NPL) is working to provide more reliable measurement of the electrical properties of materials used in nanotechnology – which could lead to much more accurate devices in the future.

Recommended for you

Chemists create 3-D printed graphene foam

June 21, 2017

Nanotechnologists from Rice University and China's Tianjin University have used 3-D laser printing to fabricate centimeter-sized objects of atomically thin graphene.

Plant inspiration could lead to flexible electronics

June 21, 2017

Versatile, light-weight materials that are both strong and resilient are crucial for the development of flexible electronics, such as bendable tablets and wearable sensors. Aerogels are good candidates for such applications, ...

Neuron transistor behaves like a brain neuron

June 20, 2017

(Phys.org)—Researchers have built a new type of "neuron transistor"—a transistor that behaves like a neuron in a living brain. These devices could form the building blocks of neuromorphic hardware that may offer unprecedented ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.