Laser as sniffer dog for explosives

November 8, 2013 by K. Maedefessel-Herrmann, Wiley
Laser as sniffer dog for explosives

A new compact sensor system based on an LED pumped polymer laser detects explosive vapors quickly and sensitively. This is a promising approach for the detection of hazards, for instance in humanitarian land mine removal.

The rise in international terrorism has required both sensitive and low-cost detecting methods for explosives. Currently, there are many different techniques used to detect explosives, classified as electromagnetic imaging, trained animals and spectrometry. Mass and ion mobility spectrometry, gas chromatography, surface-enhanced Raman spectroscopy along with fluorescent polymers have been used for the detection and quantification of trace explosive chemicals. Organic semiconductor lasers (OSLs) are particularly promising for sensing explosive vapors with high sensitivity and rapid response. The principle behind is that the presence of the strongly electron-deficient nitroaromatic explosive molecules quenches light emission in the organic gain medium, increasing the laser threshold and reducing the output light. Yet, another criterion for a practical explosive vapor sensor is portability. To make conjugated polymer laser sensors meet this requirement, the main challenge is to reduce the size of the pump source. Now, a team led by Graham A. Turnbull and Ifor D.W. Samuel demonstrates the first explosive vapor sensor based on an LED-pumped polymer laser.

The scientists from the University of St Andrews (UK) and the University of Strathclyde (Glasgow, UK) studied the operation of the device around laser threshold in detail, and discovered a two-stage turn on of the laser arising from the long pulse operation of the pump LED.

The newly developed very compact sensor is based on a distributed feedback polymer laser pumped by a commercial InGaN light-emitting diode. The laser emits a 533 nm pulsed output beam of ~10 ns duration perpendicular to the polymer film. Tests with model explosives revealed, that the new sensor can detect 8 ppb after only a 90-second exposure of the polymer laser to the vapor. The lasing threshold increases, causing the laser emission intensity to drop dramatically.

The scientists are convinced that these highly sensitive and inexpensive LED-pumped polymer sensors could be used in humanitarian land mine removal, complementing existing technologies such as ground-penetrating radar leading to an improvement in the detection of hazardous objects.

Explore further: Plastic laser detects tiny amounts of explosives

More information: Wang, Y., et al., Laser Photonics Rev., 7:6, L71-L76 (2013); DOI: dx.doi.org/10.1002/lpor.201300072

Related Stories

Plastic laser detects tiny amounts of explosives

June 8, 2010

(PhysOrg.com) -- Detecting hidden explosives is a difficult task but now researchers in the UK have developed a completely new way of detecting them, with a laser sensor capable of detecting molecules of explosives at concentrations ...

New device exposes explosive vapors

August 15, 2011

Decades after the bullets have stopped flying, wars can leave behind a lingering danger: landmines that maim civilians and render land unusable for agriculture. Minefields are a humanitarian disaster throughout the world, ...

Drawing and writing in liquid with light (w/ Video)

November 4, 2013

University of Helsinki researchers have manufactured photochemically active polymers which can be dissolved in water or certain alcohols. The new soluble, photosensitive polymer was created by doctoral student Szymon Wiktorowicz.

Using sound waves for bomb detection

October 23, 2013

(Phys.org) —A remote acoustic detection system designed to identify homemade bombs can determine the difference between those that contain low-yield and high-yield explosives.

Recommended for you

Team takes a deep look at memristors

January 19, 2018

In the race to build a computer that mimics the massive computational power of the human brain, researchers are increasingly turning to memristors, which can vary their electrical resistance based on the memory of past activity. ...

Information engine operates with nearly perfect efficiency

January 19, 2018

Physicists have experimentally demonstrated an information engine—a device that converts information into work—with an efficiency that exceeds the conventional second law of thermodynamics. Instead, the engine's efficiency ...

Artificial agent designs quantum experiments

January 19, 2018

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.