Laser as sniffer dog for explosives

November 8, 2013 by K. Maedefessel-Herrmann
Laser as sniffer dog for explosives

A new compact sensor system based on an LED pumped polymer laser detects explosive vapors quickly and sensitively. This is a promising approach for the detection of hazards, for instance in humanitarian land mine removal.

The rise in international terrorism has required both sensitive and low-cost detecting methods for explosives. Currently, there are many different techniques used to detect explosives, classified as electromagnetic imaging, trained animals and spectrometry. Mass and ion mobility spectrometry, gas chromatography, surface-enhanced Raman spectroscopy along with fluorescent polymers have been used for the detection and quantification of trace explosive chemicals. Organic semiconductor lasers (OSLs) are particularly promising for sensing explosive vapors with high sensitivity and rapid response. The principle behind is that the presence of the strongly electron-deficient nitroaromatic explosive molecules quenches light emission in the organic gain medium, increasing the laser threshold and reducing the output light. Yet, another criterion for a practical explosive vapor sensor is portability. To make conjugated polymer laser sensors meet this requirement, the main challenge is to reduce the size of the pump source. Now, a team led by Graham A. Turnbull and Ifor D.W. Samuel demonstrates the first explosive vapor sensor based on an LED-pumped polymer laser.

The scientists from the University of St Andrews (UK) and the University of Strathclyde (Glasgow, UK) studied the operation of the device around laser threshold in detail, and discovered a two-stage turn on of the laser arising from the long pulse operation of the pump LED.

The newly developed very compact sensor is based on a distributed feedback polymer laser pumped by a commercial InGaN light-emitting diode. The laser emits a 533 nm pulsed output beam of ~10 ns duration perpendicular to the polymer film. Tests with model explosives revealed, that the new sensor can detect 8 ppb after only a 90-second exposure of the polymer laser to the vapor. The lasing threshold increases, causing the laser emission intensity to drop dramatically.

The scientists are convinced that these highly sensitive and inexpensive LED-pumped polymer sensors could be used in humanitarian land mine removal, complementing existing technologies such as ground-penetrating radar leading to an improvement in the detection of hazardous objects.

Explore further: Plastic laser detects tiny amounts of explosives

More information: Wang, Y., et al., Laser Photonics Rev., 7:6, L71-L76 (2013); DOI: dx.doi.org/10.1002/lpor.201300072

Related Stories

Plastic laser detects tiny amounts of explosives

June 8, 2010

(PhysOrg.com) -- Detecting hidden explosives is a difficult task but now researchers in the UK have developed a completely new way of detecting them, with a laser sensor capable of detecting molecules of explosives at concentrations ...

New device exposes explosive vapors

August 15, 2011

Decades after the bullets have stopped flying, wars can leave behind a lingering danger: landmines that maim civilians and render land unusable for agriculture. Minefields are a humanitarian disaster throughout the world, ...

Drawing and writing in liquid with light (w/ Video)

November 4, 2013

University of Helsinki researchers have manufactured photochemically active polymers which can be dissolved in water or certain alcohols. The new soluble, photosensitive polymer was created by doctoral student Szymon Wiktorowicz.

Using sound waves for bomb detection

October 23, 2013

(Phys.org) —A remote acoustic detection system designed to identify homemade bombs can determine the difference between those that contain low-yield and high-yield explosives.

Recommended for you

Theory lends transparency to how glass breaks

January 16, 2017

Over time, when a metallic glass is put under stress, its atoms will shift, slide and ultimately form bands that leave the material more prone to breaking. Rice University scientists have developed new computational methods ...

A novel way to put flame retardant in a lithium ion battery

January 16, 2017

(Phys.org)—A team of researchers at Stanford University has found a novel way to introduce flame retardant into a lithium ion battery to prevent fires from occurring. In their paper published in the journal Science Advances, ...

Self-assembling particles brighten future of LED lighting

January 16, 2017

Just when lighting aficionados were in a dark place, LEDs came to the rescue. Over the past decade, LED technologies—short for light-emitting diode—have swept the lighting industry by offering features such as durability, ...

Phase transition discovery opens the door to new electronics

January 16, 2017

A group of European scientists led by researchers at TU Delft has discovered how phase transitions propagate throughout materials called nickelates. The discovery improves our understanding of these novel materials, which ...

Electron diffraction locates hydrogen atoms

January 13, 2017

Diffraction-based analytical methods are widely used in laboratories, but they struggle to study samples that are smaller than a micrometer in size. Researchers from the Laboratoire de cristallographie et sciences des matériaux ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.