Rosetta-comet will wake up early

August 20, 2013
In the course of one orbit around the Sun, the comet Churyumov-Gerasimenko goes through different phases of activity. At a distance of 3.4 astronomical units (AU) a significant increase in brightness can be observed. Shortly before crossing the orbit of Mars the comet has developed it characteristic tail. Departing from the Sun, Churyumov-Gerasimenko is still very active and shows a dust trail, a structure composed of large dust particles emitted during the previous orbits of the comet. This trail can still be discerned at a distances of 4.9 astronomical units from the Sun. Credit: MPS

( —On its way towards the Sun comet Churyumov-Gerasimenko, next year's destination of ESA's spacecraft Rosetta, will start emitting gas and dust earlier than previously expected. The comet's activity should be measurable from Earth by March 2014. This is one of the results of a new study performed by a group of researchers under the lead of the Max Planck Institute for Solar System Research (MPS) in Germany. The scientists analyzed numerous images from the comet's past three orbits around the Sun, obtained with ground based telescopes. For the first time, they were able to reconstruct the comet's activity in all phases of its orbit.

A spends the main part of its existence far from the Sun as an unchanged lump of ice and rock. When it approaches the Sun, however, a metamorphosis takes place: highly vaporize from the nucleus carrying fountains of with them. These accumulate to form the comet's atmosphere, the coma, and are the origin of its tail, a comet's most characteristic feature. However, the principles governing these processes are still only poorly understood. What instances spark the ejection of gas and dust? How does this activity evolve? And which processes on the surface and within the comet's nucleus are decisive?

Next year, ESA's Rosetta will try to answer these questions. The space probe is scheduled to rendezvous with comet Churyumov-Gerasimenko in spring, deposit a lander on its surface in the autumn of 2014, and accompany the comet on its way toward the Sun. The mission therefore offers the unique chance to study all phases of the onset of cometary activity from close-up. The new results presented by researchers from the MPS now suggest that Churyumov-Gerasimenko could allow for exciting insights very early in the course of the mission.

"Churyumov-Gerasimenko could be active by March of next year", Dr. Colin Snodgrass from the MPS summarizes the new results. Two months prior to this, in January 2014, the space probe will be awakened from its hibernation phase.

The scientists base their predictions on 31 data sets recorded by them and other professional groups in the years between 1995 and 2010 with telescopes like the Very Large Telescope (VLT) at the European Southern Observatory (ESO). The images show the comet at different points during its orbit and thus in different phases of activity.

"We were able to analyze data from the entire activity-cycle of Churyumov-Gerasimenko with the same method. For the first time, this allows for a meaningful comparison of all data sets", says Snodgrass. "In this way we compiled a comprehensive picture of how the comet's activity develops during its journey around the Sun", his colleague Dr. Cecilia Tubiana from the MPS adds.

The researchers took an especially close look at the comet's past approach in 2007 and 2008. When ten years ago, ESA chose Churyumov-Gerasimenko as target of the Rosetta mission, this triggered a myriad of observational campaigns. "Most of the images taken in 2007, when the comet was far away from the Sun, present a significant difficulty", says Tubiana. During this time the comet could be seen from Earth only in front of the background of the Galactic center, the mass center of the Milky Way. In all images the faint comet only barely stands out from this crowd of stars. Next year, when Rosetta arrives at the comet, the observational situation will be similar. Many ground-based telescopes will then again be pointed towards Churyumov-Gerasimenko to complement the data obtained by Rosetta.

In their new study the researchers were able to analyze data that had been unusable before. Key to this success was a method usually employed to discover exoplanets in these crowded star fields. Images taken shortly after one another are subtracted making the crowded starry background disappear and revealing bodies that - like a comet - change their position. After using this technique to make the comet stand out from the camouflage of background stars, its brightness could be accurately measured. From the change of the brightness in the course of one it is possible to reconstruct how active the comet was at which time. For the analysis of comet images this method was until now rather uncommon - and usually unnecessary, because rarely comets have been observed in front of the background of the Galactic center.

The elaborate calculations rendered astonishing news: to the researchers' surprise the comet's brightness increased distinctly at a distance of 4.3 astronomical units from the Sun. This is 4.3 times the distance between the Sun and Earth. Before, it had been thought a rule of thumb, that comets become active at a distance of approximately 3 astronomical units. At this distance the Sun heats the comet's surface enough for water ice to sublimate. "Some other gas must be responsible for the earlier activity that we observed", says Tubiana.

"Since Churyumov-Gerasimernko seems to have behaved much the same in the past orbits, we are optimistic that we can safely predict next year's events", says Dr. Hermann Böhnhardt from the MPS, lead scientist of Rosetta's landing mission, who was also part of the new study. After its awakening in March 2014, the researchers expect the comet to reach its peak activity in mid-September 2015 - almost one month after perihelion.

ESA's Rosetta was launched in 2004 and is scheduled to reach its destination, the comet Churyumov-Gerasimenko, in 2014. In the autumn of 2014 the lander Philae will touch down on the comet's surface. The MPS is the research institution with the largest contribution to this mission. The institute heads the teams of three instruments on board, contributed to five others and has developed and built important parts of the .

Explore further: Rosetta's first glimpse of the comet

More information: Snodgrass, C. Tubiana, D.M. Bramich, K. Meech, H. Böhnhardt, and L. Barrera: Beginning of activity in 67P/Churyumov-Gerasimenko and predictions for 2014/5, Astronomy & Astrophysics, August 20, 2013.

Related Stories

Viewing crescent Mars

October 2, 2012

(—The sight of the crescent Moon hanging in the sky above Earth is a familiar one, but this image taken by ESA's Rosetta spacecraft as it passed by the Red Planet in February 2007 captures the rare view of a skinny ...

Boosting the accuracy of Rosetta's Earth approach

October 19, 2007

Yesterday, 18 October at 18:06 CEST, the thrusters of ESA’s comet chaser, Rosetta, were fired in a planned, 42-second trajectory correction manoeuvre designed to 'fine tune' the spacecraft's approach to Earth. Rosetta is ...

Where comets emit dust

April 26, 2010

Studying comets can be quite dangerous - especially from close up. Because the tiny particles of dust emitted into space from the so-called active regions on a comet's surface can damage space probes.

Rosetta's final Earth boost

November 4, 2009

ESA's comet chaser Rosetta will swing by Earth for the last time on 13 November to pick up energy and begin the final leg of its 10-year journey to comet 67P/Churyumov-Gerasimenko. ESA's European Space Operations Centre will ...

Mission to land on a comet

February 3, 2012

Europe’s Rosetta spacecraft is en route to intercept a comet– and to make history. In 2014, Rosetta will enter orbit around comet 67P/Churyumov-Gerasimenkoand land a probe on it, two firsts.

Recommended for you

Solar eruptions could electrify Martian moons

October 18, 2017

Powerful solar eruptions could electrically charge areas of the Martian moon Phobos to hundreds of volts, presenting a complex electrical environment that could possibly affect sensitive electronics carried by future robotic ...

Potential human habitat located on the moon

October 18, 2017

A study published in Geophysical Research Letters confirms the existence of a large open lava tube in the Marius Hills region of the moon, which could be used to protect astronauts from hazardous conditions on the surface.

A solar-powered asteroid nursery at the orbit of Mars

October 18, 2017

The planet Mars shares its orbit with a handful of small asteroids, the so-called Trojans. Among them, one finds a unique group, all moving in very similar orbits, suggesting that they originated from the same object. But ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.