Getting to the core of Fukushima

August 7, 2013, American Institute of Physics

Critical to the recovery efforts following the devastating effects of the 2011 tsunami on Japan's Fukushima reactor is the ability to assess damage within the reactor's core. A study in the journal AIP Advances by a team of scientists from Los Alamos National Laboratory (LANL) shows that muon imaging may offer the best hope of assessing damage to the reactor cores and locating the melted fuel.

Muon imaging, which utilizes naturally occurring created in the atmosphere by to image dense objects, should solve the problem of determining the of the reactor fuel in the short term, the LANL team said.

"Muons are scattered more strongly by high-Z materials such as in Fukushima's reactor," explained LANL researcher Haruo Miyadera, who is the lead author of the paper. "By measuring the scattering angle, and understanding the physics of Coulomb multiple scattering, one can assess the locations and amount of the melted fuel."

This new technique offers significant advantages over traditional muon imaging. The traditional method is similar to Roentgen in that it measures muon-flux attenuation after an object. Muons, however, are scattered in a manner that causes image blur.

"The new LANL method measures muon trajectories both before and after the object," said Miyadera. "By combining the incoming and outgoing trajectories, one can more accurately specify the location of the scattering, yielding a clearer image."

Why is Imaging Fukushima So Challenging?

Assessing the core damage at Fukushima is a very difficult challenge, said Miyadera. In the case of Three Mile Island, cameras were eventually installed in the reactor pressure vessel to assess the damage. However, in the case of Fukushima Daiichi, access inside the reactor pressure vessel has been very limited due to high radiation. To address this, the team plans to install detectors in front of the reactor building and on the 2nd floor of the turbine building so that their muon scattering technique can assess the damage without direct access to the reactor building.

The LANL team has faced numerous challenges, from operating detectors in the high radiation environment at Fukushima Daiichi to the difficulties in finding funding for a project at an American laboratory to address a problem in Japan. The next step for the crew is a demonstration of their technique using a research reactor in Kawasaki, Japan where they will verify the spatial resolution of their technique and track the effects of obstructions such as concrete walls and steel construction materials on the muon scattering.

"A few months of measurement will reveal the distribution for reactor core fuel and will accelerate the planning and execution of dismantlement, potentially reduce the overall project span by years, reduce overall worker radiation doses, and help Japan and the nuclear power industry in the recovery process from this catastrophic event," Miyadera said.

Explore further: Method uses cosmic rays to gather detailed information from inside damaged Fukushima nuclear reactors

More information: The article, "Imaging Fukushima Daiichi reactors with muons" by Haruo Miyadera, Konstantin N. Borozdin, Steve J. Greene, Zarija Luki?, Koji Masuda, Edward C. Milner, Christopher L. Morris and John O. Perry is published in the journal AIP Advances. See: dx.doi.org/10.1063/1.4808210

Related Stories

No uncontrolled reaction at Fukushima: operator

November 3, 2011

The operator of Japan's crippled Fukushima atomic plant Thursday played down fears of an uncontrolled chain reaction at the site, despite the discovery of evidence of recent nuclear fission.

Record radiation levels detected at Fukushima reactor

June 27, 2012

TEPCO, the operator of Japan's crippled Fukushima nuclear plant, said Wednesday record amounts of radiation had been detected in the basement of reactor number 1, further hampering clean-up operations.

Small fire at Japan nuclear lab; no radiation leak

December 20, 2011

A building housing an experimental nuclear reactor in Japan caught fire Tuesday, but there was no leak of radioactive materials, officials said, amid nervousness over Japan's atomic industry.

TEPCO: Record high radiation level found in fish

January 18, 2013

A fish contaminated with radiation levels more than 2,500 times the legal limit has been caught near Japan's crippled Fukushima Daiichi nuclear plant, its operator said Friday.

Recommended for you

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

Urban heat island effects depend on a city's layout

February 22, 2018

The arrangement of a city's streets and buildings plays a crucial role in the local urban heat island effect, which causes cities to be hotter than their surroundings, researchers have found. The new finding could provide ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.