Muscles act as metamaterials due to collective behavior, physicists show

June 21, 2013 by Lisa Zyga feature
Muscles act as metamaterials when they exhibit “negative stiffness,” meaning they loosen when extended and tighten when shortened. Although this unusual behavior was originally observed in 1971, a new study has found that the behavior can be explained by the collective behavior of muscle material, which seems to be finely tuned to operate near a critical point. Credit: Wikipedia / public domain

( —Metamaterials are defined as artificial materials that have been engineered to have unusual properties that are not found in nature. For instance, ordinary materials (say, a rubber band) that are under tension expand in the direction of that tension, while metamaterials may contract, exhibiting "negative stiffness" while still remaining stable. An idea of how this could work in principle was suggested in a 1991 Nature paper by Cohen and Horowitz, and in a 2012 Nature Materials paper by Nicolaou and Motter this idea was implemented to construct an extended material that contracts when tensioned (pulled) or expands when compressed (pushed).

Upon further search for possible mechanisms of negative stiffness, scientists in a new study have found that biological muscles exhibit a mechanical response that also qualifies them as metamaterials: when a tetanized (maximally contracted) is suddenly extended, it comes loose, and if it is suddenly shortened, it tightens up without using any of the metabolic fuel adenosine triphosphate (ATP). The researchers explained that this behavior is due to the folding and unfolding of proteins called cross-bridges that play a crucial role in . Most interestingly, muscles appear to be finely tuned to perform close to a critical point, at which they can exhibit highly synchronized microscale behavior.

The researchers, M. Caruel, J.-M. Allain, and L. Truskinovsky, at CNRS-UMR, Ecole Polytechnique in Palaiseau Cedex, France, have published their paper in a recent issue of Physical Review Letters. Caruel is now at Inria in Palaiseau, France.

As the authors of the new paper explain, skeletal muscles can exhibit two types of behavior: active and passive. Active behavior occurs on time scales of about 30 milliseconds (ms). At shorter time scales, about 1 ms, muscles exhibit passive behavior, including negative stiffness. As the researchers explain, elementary parts of these mechanisms that ensure efficient recovery of forces work as snap-springs, making muscles similar in a sense to shape memory alloys.

A remarkable phenomenon reported by Caruel, et al., is that, in contrast to known smart materials, the micro-mechanisms inside muscles are finely tuned to work in unison, which allows them to perform a highly synchronized stroke. Behind this collective behavior is an internal architecture with domineering long-range interactions, which has been previously overlooked in muscle studies.

Already in 1971, researchers A. F. Huxley and R. M. Simmons at University College London observed the unusual passive mechanical response of tetanized muscles and developed a model of muscle contraction explaining this behavior. This model has since dominated the field, and its impact was based on the impressive scientific reputation of Sir Andrew Huxley, a Nobel Prize-winning biophysicist who served for a long time as President of the Royal Society.

In the paper of Caruel, et al., a seemingly innocent change of the loading conditions in the Huxley-Simmons model has led to the discovery of the collective behavior and criticality, which had been overlooked despite more than 40 years of intense scrutiny of this model in many papers and textbooks.

Quite surprisingly, the cooperation at the nanoscale in muscles was found to be similar to magnetism; moreover, the critical point at which muscles seem finely tuned to perform near is, in this case, a direct analog of the ferromagnetic Curie point. Criticality and the ubiquity of power laws are issues of great significance in contemporary science, giving a framework for understanding the emergence of complexity in a variety of natural systems, from earthquakes to turbulence. Why and how muscle systems are tuned to criticality is an open problem, and the authors argue that it can be the result of either evolutionary or functional self-organization.

Tuning to criticality in muscles has many intriguing parallels in other biological systems. For instance, in a 2011 paper published in Physical Review Letters, Patzelt and Pawelzik showed that when humans perform control tasks like in upright standing or while balancing a stick, their behavior also exhibits power law fluctuations, which suggests a fine-tuning of the underlying mechanical system to a critical point. Similar fluctuations have been also found in the collective behavior of humans; for example, in stock market log-return fluctuations. According to Patzelt and Pawelzik, the criticality emerges when an unstable dynamics as, for instance, in metamaterials with negative stiffness, is stabilized by an adaptive controller that has finite memory.

Overall, the discovery that muscles act as due to suggests that determining the cause of the critical behavior of muscles may lead to a paradigm change in the biomimetic design of new materials.

Explore further: Artificial muscle computer performs as a universal Turing machine

More information: M. Caruel, et al. "Muscle as Metamaterial Operating Near a Critical Point." PRL 110, 248103 (2013). DOI: 10.1103/PhysRevLett.110.248103

Z. G. Nicolaou, et al. "Mechanical metamaterials with negative compressibility transitions." Nature Materials, 11, 608 (2012). DOI: 10.1038/nmat3331

Cohen, J.E., Horowitz, P. "Paradoxical behaviour of mechanical and electrical networks." Nature 352, 699 - 701 (1991). DOI:10.1038/352699a0

Patzelt, Felix, and Klaus Pawelzik. "Criticality of adaptive control dynamics." PRL, 107.23 (2011): 238103. DOI: 10.1103/PhysRevLett.107.238103

Huxley, A. F., Simmons, R. M. "Proposed mechanism of force generation in striated muscle." Nature 233, 533-538 (1971). DOI: 10.1038/233533a0

Related Stories

Hybrid carbon nanotube yarn muscle

May 30, 2013

Professor Seon Jeong Kim of Hanyang University has created a high capacity yarn muscle that does not require electrolytes or special packaging. It will have a big impact in the motor, biological and robot industry.

New research says muscles buckle when relaxed

November 1, 2011

Multiple sclerosis, cerebral palsy, and other conditions involving muscle spasticity be better understood following the discovery by Australian researchers that muscle fibres buckle when at rest.

Caffeine boosts power for elderly muscles

June 28, 2012

A new study to be presented at the Society for Experimental Biology meeting on June 30 has shown that caffeine boosts power in older muscles, suggesting the stimulant could aid elderly people to maintain their strength, reducing ...

Recommended for you

New bioimaging technique is fast and economical

August 18, 2017

A new approach to optical imaging makes it possible to quickly and economically monitor multiple molecular interactions in a large area of living tissue—such as an organ or a small animal; technology that could have applications ...

Team images tiny quasicrystals as they form

August 17, 2017

When Israeli scientist Daniel Shechtman first saw a quasicrystal through his microscope in 1982, he reportedly thought to himself, "Eyn chaya kazo"—Hebrew for, "There can be no such creature."


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Jun 21, 2013
Good work, and congratulations.

"Most interestingly, muscles appear to be finely tuned to perform close to a critical point, at which they can exhibit highly synchronized microscale behavior."

I imagine this relates to Art Winfree's work circa 1967 on coupled oscillators and biological synchronization, as well described by Steve Strogatz and Ian Stewart in an article by that name in Scientific American, Dec 1993 (available online at an site). Heart cells synchronize their beats. Countless other examples as well, likely including neuron activity in the brain.

"Quite surprisingly, the cooperation at the nanoscale in muscles was found to be similar to magnetism..." Not really so suprising, in my view. In their article, Strogatz and Stewart analogized Art Winfree's law of coupled oscillators to phase transitions in physics. See also the obituary that Strogatz wrote about Winfree's life, for SIAM.
not rated yet Jun 21, 2013
This behavior is related to geometry of auxetic foam, it's statical effect of neutral particles so it has no direct relation to any coupled oscillators, plasma Universe and/or vacuum theory.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.