Research shows promise for reducing greenhouse gases

June 3, 2013
Research shows promise for reducing greenhouse gases
Josephine Hill's laboratory show faculty researchers David Layzell, Josephine Hill (both in white lab coats) and post-doctoral researcher Andrei Veksha (in blue lab coat), University of Calgary. Credit: Photo by Mike Sturk.

University of Calgary scientists are investigating how 'Alberta-grown' biomass – such as straw and wood left over from agricultural and forestry operations – could be used to clean up chemical contaminants in water from oilsands operations.

"It's important to look at areas of synergy for these industries," says project lead David Layzell, a University of Calgary biological sciences professor affiliated with the Institute for Sustainable Energy, Environment and Economy.

"We can get a bigger bang for the buck by getting our agriculture and forestry sectors to help the oil and gas sector solve some of its environmental problems," Layzell says.

This research project received $57,500 from the Climate Change and Emissions Management (CCEMC) Corporation though the Biological Management Program. The program is managed on behalf of CCEMC by Alberta Innovates Bio Solutions.

Alberta's oilsands mining industry currently uses about 123 million cubic metres of water annually that ends up in large tailings ponds.

The in this processed water are dominated by naphthenic acids, which are toxic and corrosive. In addition, microbes in the ponds convert these naphthenic acids to , which is emitted to the atmosphere. Methane is a greenhouse gas that has about 25 times more warming potential in Earth's atmosphere than carbon dioxide.

University of Calgary researchers aim to develop an activated biocarbon tailored for adsorbing the naphthenic acids in tailings pond water, thereby preventing the formation and release of methane .

In addition, the spent biocarbon could be used as either a source of renewable energy to displace fossil fuels, or land-filled as a permanent – further reducing .

"This would give us a low-cost greenhouse gas advantage from using a bioproduct, while also reducing the oil sands industry's ," Layzell notes.

The project is based on a previous study led by Layzell that was supported by companies in the Oil Sands Leadership Initiative and by the Natural Sciences and Engineering Resource Council of Canada.

That initial study showed activated carbon products, such as those currently being used in kitchen water filters and industrial filtration systems were very effective at removing organics from water obtained from oilsands operations.

"Given that finding, we are working to develop a novel way of making an activated or adsorbing biocarbon that would have the chemical properties of commercial products, but can be produced at large scale from Alberta-grown biomass with much lower energy input and economic cost," Layzell says.

Layzell is currently collaborating with colleagues Josephine Hill, a chemical and petroleum engineering professor in the Schulich School of Engineering, and Andrei Veksha, a post-doctoral researcher at the Schulich School of Engineering who has expertise in making activated carbons.

The researchers have successfully made small amounts of biocarbon from aspen residues using "slow pyrolysis," a relatively low-temperature process that 'burns' the biomass in the absence of oxygen.

"We're looking for a cheaper process with lower energy input to make the activated biochar. This would minimize the cost per cubic metre of using it to treat oilsands water, while also maximizing the greenhouse gas benefit," Hill says. "Our preliminary results are promising."

The team, which has held several meetings with industry experts, will need to show they can scale up their laboratory process and also do economics analysis to ensure their final products are cost-efficient for the oilsands industry.

"It's a win-win-win potential," Layzell says. "We create a new market for agricultural and forest products. As a result, a new industry emerges that links the agriculture and forest industries to solving the oil and gas industry's environmental problems . . . and we can significantly reduce our carbon footprint."

Explore further: Recovering water from tailings ponds

Related Stories

Recovering water from tailings ponds

May 29, 2012

( -- As Alberta faces increasing pressure to make the oil industry more sustainable, one University of Alberta researcher may have found a natural solution to a problem that has been plaguing oil companies for years.

Caution needed with new greenhouse gas emission standards

July 13, 2012

Policy makers need to be cautious in setting new 'low-carbon' standards for greenhouse gas emissions for oil sands-derived fuels as well as fuels from conventional crude oils University of Calgary and University of Toronto ...

Researchers focus on dairy's carbon footprint

May 31, 2013

Researchers at the University of Arkansas are attempting to help the U.S. dairy industry decrease its carbon footprint as concentrations of carbon dioxide in the Earth's atmosphere reach record levels.

Recommended for you


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.