NJIT new patent awards: Orthogonal space time codes, decoding data transmissions

March 7, 2013

Two new patents to improve orthogonal space time codes and decode data transmissions of space time spreading were recently awarded to NJIT Distinguished Professor Yeheskel Bar-Ness, executive director of the Elisha Yegal Bar-Ness Center for Wireless Communications and Signal Processing Research. Co-inventors with Bar-Ness on both patents were NJIT alums Amir Laufer and Kodzovi Acolatse.

"Method and Apparatus for Improving Transmission with Orthogonal Codes," (US Patent # 8.379.746) was awarded Feb.19 2013 to Bar-Ness and Laufer. "Modern wireless communication systems utilize multiple antennas for transmitting and receiving the data," said Bar-Ness. "A simple, yet powerful coding scheme for such systems is orthogonal space time coding. This invention involves a novel method for the transmission and the decoding of such codes resulting in better utilization of the channel, i.e., transmission with higher data rate along with lower error rate."

"Decoding Data Transmitted Space-Time Spreading in a Wireless Communication System Implementation and Performance Analysis of Space Time Spreading DS-CDMA System," (US Patent # 8.355426) was awarded Jan. 15 2013 to Bar-Ness and Acolatse.

Bar-Ness, a prominent expert in and signal processing, has worked for four decades to advance the field of electrical and computer engineering. Bar-Ness, who still directs the Center for Wireless Communications and Research, has worked with industry, government and other universities to improve many aspects of wireless technology.

An especially notable achievement of the Center is the set of algorithms developed by its researchers. The algorithms have become industry standards, used to facilitate so-called (CDMA), a widely-used digital cell phone technology. Faculty affiliated with the center—the backbone of communications research in the department of electrical and computer engineering at NJIT for two decades—have received funding for projects from the National Science Foundation, the U.S. Army and Air Force and companies that include AT&T, ITT, InterDigital, Nokia, Mitsubishi, Panasonic, Samsung and Telcordia.

Both Laufer and Acolatse received doctorates in electrical engineering from the Department of Electrical and at Newark College of Engineering in 2011 and 2010, respectively. Laufer is now a senior DSP Algorithms Engineer for Intel Israel at its development center in Jerusalem. Acolatse is a patent examiner at the US Patent and Trademark Office in Washington, DC.

Explore further: Space is 'current frontier' for engineer working on next-gen wireless technologies

Related Stories

Engineers unveil two-way wireless breakthrough

June 14, 2012

(Phys.org) -- Groundbreaking two-way wireless technology resulting in vastly superior voice and data services has been developed by a University of Waterloo engineering research team led by Amir K. Khandani, the Canada Research ...

Recommended for you

A not-quite-random walk demystifies the algorithm

December 15, 2017

The algorithm is having a cultural moment. Originally a math and computer science term, algorithms are now used to account for everything from military drone strikes and financial market forecasts to Google search results.

US faces moment of truth on 'net neutrality'

December 14, 2017

The acrimonious battle over "net neutrality" in America comes to a head Thursday with a US agency set to vote to roll back rules enacted two years earlier aimed at preventing a "two-speed" internet.

FCC votes along party lines to end 'net neutrality' (Update)

December 14, 2017

The Federal Communications Commission repealed the Obama-era "net neutrality" rules Thursday, giving internet service providers like Verizon, Comcast and AT&T a free hand to slow or block websites and apps as they see fit ...

The wet road to fast and stable batteries

December 14, 2017

An international team of scientists—including several researchers from the U.S. Department of Energy's (DOE) Argonne National Laboratory—has discovered an anode battery material with superfast charging and stable operation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.