Ketchup turns somersaults: Scientists develop a numerical model of complex fluids

March 7, 2013, Technical University Munich
This shows Markus Harasim at the microscopic camera set-up monitoring the behavior of polymer molecules in a microscopic flow channel. Credit: Andreas Battenberg / TU Muenchen

Blood, paint or ketchup are complex liquids composed of several different components. For the construction of pumps, or the improvement of technical processes scientists and engineers need description models. They make the special properties of such liquids predictable. Researchers at the Technische Universitaet Muenchen and the Federal Institute of Technology Zurich have developed such a model. They present it in the current issue of the journal Physical Review Letters.

The unusual behavior of complex fluids is part of our daily life: cake dough climbs up the stirring bar, ketchup becomes liquid when you shake it. Also technology uses such phenomena: if we add a small amount of long-chained polymer molecules, a pipeline can transport more oil. The polymers reduce the flow resistance. But up to now the origin of these effects was unclear. The engineers had to rely on estimates and lengthy trials.

A team of physicists led by Professor Andreas Bausch, Chair of at TUM now developed a of such liquids. Experimental heart of the work are a fine flow channel and a micro-camera. Like the camera looking down at the pit lane of Formula 1 races, the scientists monitored the movements of individual in the flow.

From their observations they conducted a theoretical model for the motion of rigid molecules different from the current. In addition, they were able also to provide for colleagues suspected of experimental confirmation.

The tumbling movements of the polymers contribute to the unusual behavior of complex fluids like ketchup, blood or paint. Credit: Video: Markus Harasim / TU Muenchen

Challenging for theory and experiment

"Due to the incredibly large number of the study and description of the motion of polymers is a big challenge," says Markus Harasim, one of the two main authors. Even a simple system of water and polymer shows the effects of complex fluids. In order to make the long molecules visible, the physicists marked the polymers with a fluorescent dye. This allowed them to study the movements under various conditions.

To their surprise the mathematical modeling showed, that even the simple model of a stiff rod was suitable as a starting point. Then the researchers refined the model by taking into account the thermal motion, the flexibility of the molecule and the higher flow resistance of a curved polymer. "Since we now know the microscopic mechanisms, we can extend the model to more complex geometries and flows. And thanks to our experimental set-up we should be able to verify our theories," says co-author Bernhard Wunderlich, who is a well known rapper in the hip-hop band "Blumentopf" in his off time.

Explore further: Making complex fluids look simple

More information: Direct Observation of the Dynamics of Semiflexible Polymers in Shear Flow, Markus Harasim, Bernhard Wunderlich, Orit Peleg, Martin Kröger, and Andreas Bausch, Physical Review Letters, online, 4. März 2013 DOI: 10.1103/PhysRevLett.110.108302

Related Stories

Making complex fluids look simple

June 1, 2011

An international research team has successfully developed a widely applicable method for discovering the physical foundations of complex fluids for the first time. Researchers at the University of Vienna and University of ...

New theory may shed light on dynamics of large-polymer liquids

August 23, 2011

A new physics-based theory could give researchers a deeper understanding of the unusual, slow dynamics of liquids composed of large polymers. This advance provides a better picture of how polymer molecules respond under fast-flow, ...

Muscle filaments make mechanical strain visible

December 20, 2010

Plastics-based materials have been in use for decades. But manufacturers are facing a serious hurdle in their quest for new developments: Substantial influences of the microscopic material structure on mechanical material ...

Molecules delivering drugs as they walk

August 3, 2010

An octopus-like polymer can "walk" along the wall of a narrow channel as it is pushed through by a solvent. Now research in The Journal of Chemical Physics, which is published by the American Institute of Physics, provides ...

Moving polymers through pores

July 14, 2010

The movement of long chain polymers through nanopores is a key part of many biological processes, including the transport of RNA, DNA, and proteins. New research reported in The Journal of Chemical Physics, which is published ...

Recommended for you

How a particle may stand still in rotating spacetime

May 25, 2018

When a massive astrophysical object, such as a boson star or black hole, rotates, it can cause the surrounding spacetime to rotate along with it due to the effect of frame dragging. In a new paper, physicists have shown that ...

Scientists discover new magnetic element

May 25, 2018

A new experimental discovery, led by researchers at the University of Minnesota, demonstrates that the chemical element ruthenium (Ru) is the fourth single element to have unique magnetic properties at room temperature. The ...

Long live the doubly charmed particle

May 25, 2018

Finding a new particle is always a nice surprise, but measuring its characteristics is another story and just as important. Less than a year after announcing the discovery of the particle going by the snappy name of Ξcc++ (Xicc++), ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.