Modeling Jupiter and Saturn's possible origins

March 5, 2013
Modeling Jupiter and Saturn's possible origins

New theoretical modeling by Carnegie's Alan Boss provides clues to how the gas giant planets in our solar system—Jupiter and Saturn—might have formed and evolved. His work was published recently by the Astrophysical Journal.

New stars are surrounded by rotating gas disks during the early stages of their lives. Gas giant planets are thought to form in the presence of these disks.

Observations of young stars that still have these gas disks demonstrate that sun-like stars undergo periodic outbursts, lasting about 100 years, which transfer mass from the disk onto the young star, increasing its luminosity. It is thought that these short bursts of mass accretion are driven by marginal gravitational instability in the gas disk.

There are competing theories for how gas giant planets form around proto-suns. One proposes that the planets formed from slowly growing ice and rock cores, followed by rapid accretion of gas from the surrounding disk. The other theory proposes that clumps of form in , increasing in mass and density, forming a in a single step.

Boss developed highly detailed, three dimensional models demonstrating that regardless of how gas giant planets form, they should have been able to survive periodic outbursts of mass transfer from the gas disk onto the young star. One model similar to our own Solar System was stable for more than 1,000 years, while another model containing planets similar to our Jupiter and Saturn was stable for more than 3,800 years. The models showed that these planets were able to avoid being forced to migrate inward to be swallowed by the growing proto-sun, or being tossed completely out of the by close encounters with each other.

"Gas giant planets, once formed, can be hard to destroy," said Boss, "even during the energetic outbursts that experience."

Given that searches for extrasolar gas giant planets have found them to be present around about 20% of sun-like stars, this is a reassuring outcome. It suggests that our improved theoretical understanding of the formation and orbital evolution of gas giants is on the right track.

Explore further: Gas giants jump into planet formation early

Related Stories

Making Jupiters

August 21, 2009

IC348 is a glowing nebula of young stars, hot gas, and cold dust seen in the direction of the constellation of Perseus. It is the nearest rich cluster of young stars to earth, being only about one thousand light-years away. ...

Baby Jupiters must gain weight fast

January 5, 2009

The planet Jupiter gained weight in a hurry during its infancy. It had to, since the material from which it formed probably disappeared in just a few million years, according to a new study of planet formation around young ...

Rocky planets could have been born as gas giants

September 16, 2011

When NASA announced the discovery of over 1,200 new potential planets spotted by the Kepler Space Telescope, almost a quarter of them were thought to be Super-Earths. Now, new research suggests that these massive rocky planets ...

Recommended for you

NASA telescope studies quirky comet 45P

November 22, 2017

When comet 45P zipped past Earth early in 2017, researchers observing from NASA's Infrared Telescope Facility, or IRTF, in Hawai'i gave the long-time trekker a thorough astronomical checkup. The results help fill in crucial ...

Uncovering the origins of galaxies' halos

November 21, 2017

Using the Subaru Telescope atop Maunakea, researchers have identified 11 dwarf galaxies and two star-containing halos in the outer region of a large spiral galaxy 25 million light-years away from Earth. The findings, published ...

Cassini image mosaic: A farewell to Saturn

November 21, 2017

In a fitting farewell to the planet that had been its home for over 13 years, the Cassini spacecraft took one last, lingering look at Saturn and its splendid rings during the final leg of its journey and snapped a series ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.