Baby Jupiters must gain weight fast

January 5, 2009,
This photograph from NASA's Spitzer Space Telescope shows the young star cluster NGC 2362. By studying it, astronomers found that gas giant planet formation happens very rapidly and efficiently, within less than 5 million years, meaning that Jupiter-like worlds experience a growth spurt in their infancy. Image: NASA/JPL-Caltech/T. Currie (CfA)

The planet Jupiter gained weight in a hurry during its infancy. It had to, since the material from which it formed probably disappeared in just a few million years, according to a new study of planet formation around young stars.

Smithsonian astronomers examined the 5 million-year-old star cluster NGC 2362 with NASA's Spitzer Space Telescope, which can detect the signatures of actively forming planets in infrared light. They found that all stars with the mass of the Sun or greater have lost their protoplanetary (planet-forming) disks. Only a few stars less massive than the Sun retain their protoplanetary disks. These disks provide the raw material for forming gas giants like Jupiter. Therefore, gas giants have to form in less than 5 million years or they probably won't form at all.

"Even though astronomers have detected hundreds of Jupiter-mass planets around other stars, our results suggest that such planets must form extremely fast. Whatever process is responsible for forming Jupiters has to be incredibly efficient," said lead researcher Thayne Currie of the Harvard-Smithsonian Center for Astrophysics. Currie presented the team's findings at a meeting of the American Astronomical Society in Long Beach, Calif.

Even though nearly all gas giant-forming disks in NGC 2362 have disappeared, several stars in the cluster have "debris disks," which indicates that smaller rocky or icy bodies such as Earth, Mars, or Pluto may still be forming.

"The Earth got going sooner, but Jupiter finished first, thanks to a big growth spurt," explained co-author Scott Kenyon.

Kenyon added that while Earth took about 20 to 30 million years to reach its final mass, Jupiter was fully grown in only 2 to 3 million years.

Previous studies indicated that protoplanetary disks disappear within 10 million years. The new findings put even tighter constraints on the time available to create gas giant planets around stars of various masses.

Source: Harvard-Smithsonian Center for Astrophysics

Explore further: Mantle neon illuminates Earth's formation

Related Stories

Mantle neon illuminates Earth's formation

December 5, 2018

The Earth formed relatively quickly from the cloud of dust and gas around the Sun, trapping water and gases in the planet's mantle, according to research published Dec. 5 in the journal Nature. Apart from settling Earth's ...

Cosmic detective work: Why we care about space rocks

November 8, 2018

The entire history of human existence is a tiny blip in our solar system's 4.5-billion-year history. No one was around to see planets forming and undergoing dramatic changes before settling in their present configuration. ...

Catching asteroid 3 Juno at its best

November 14, 2018

Not all oppositions are created equal. This week's sky target offers a good case in point, as asteroid 3 Juno reaches its most favorable viewing position for the decade.

Chandra detection of diskless young stars

September 17, 2018

Stars frequently form in crowded environments. By combining the resources of multi-wavelength missions like Chandra in the X-ray and Spitzer in the infrared, astronomers are able to resolve ambiguities and assemble a much ...

Recommended for you

An exoplanet loses its atmosphere in the form of a tail

December 6, 2018

A new study led by scientists from the Instituto de Astrofísica de Canarias (IAC) reveals that the giant exoplanet WASP-69b carries a comet-like tail made up of helium particles escaping from its gravitational field and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.