Baby Jupiters must gain weight fast

January 5, 2009
This photograph from NASA's Spitzer Space Telescope shows the young star cluster NGC 2362. By studying it, astronomers found that gas giant planet formation happens very rapidly and efficiently, within less than 5 million years, meaning that Jupiter-like worlds experience a growth spurt in their infancy. Image: NASA/JPL-Caltech/T. Currie (CfA)

The planet Jupiter gained weight in a hurry during its infancy. It had to, since the material from which it formed probably disappeared in just a few million years, according to a new study of planet formation around young stars.

Smithsonian astronomers examined the 5 million-year-old star cluster NGC 2362 with NASA's Spitzer Space Telescope, which can detect the signatures of actively forming planets in infrared light. They found that all stars with the mass of the Sun or greater have lost their protoplanetary (planet-forming) disks. Only a few stars less massive than the Sun retain their protoplanetary disks. These disks provide the raw material for forming gas giants like Jupiter. Therefore, gas giants have to form in less than 5 million years or they probably won't form at all.

"Even though astronomers have detected hundreds of Jupiter-mass planets around other stars, our results suggest that such planets must form extremely fast. Whatever process is responsible for forming Jupiters has to be incredibly efficient," said lead researcher Thayne Currie of the Harvard-Smithsonian Center for Astrophysics. Currie presented the team's findings at a meeting of the American Astronomical Society in Long Beach, Calif.

Even though nearly all gas giant-forming disks in NGC 2362 have disappeared, several stars in the cluster have "debris disks," which indicates that smaller rocky or icy bodies such as Earth, Mars, or Pluto may still be forming.

"The Earth got going sooner, but Jupiter finished first, thanks to a big growth spurt," explained co-author Scott Kenyon.

Kenyon added that while Earth took about 20 to 30 million years to reach its final mass, Jupiter was fully grown in only 2 to 3 million years.

Previous studies indicated that protoplanetary disks disappear within 10 million years. The new findings put even tighter constraints on the time available to create gas giant planets around stars of various masses.

Source: Harvard-Smithsonian Center for Astrophysics

Explore further: Astrophysicists study 'rejuvenating' pulsar in a neighboring galaxy

Related Stories

Astronomers take a closer look at a young circumbinary disk

April 10, 2017

(Phys.org)—In a research paper published Apr. 3 on arXiv.org, astronomers presented a close-up view of the circumbinary disk HD 142527 obtained with the Atacama Large Millimeter and submillimeter Array (ALMA) in Chile. ...

Black holes theorized in the 18th century

April 11, 2017

Black holes are not made up of matter, although they have a large mass. This explains why it has not yet been possible to observe them directly, but only via the effect of their gravity on the surroundings. They distort space ...

Dedicated planet imager opens its eyes to other worlds

February 3, 2017

An astronomical instrument at Subaru Telescope on Maunakea specifically designed to see planets around other stars has been successfully commissioned and has started to reveal stunning images of other worlds after almost ...

Recommended for you

First global simulation yields new insights into ring system

April 27, 2017

A team of researchers in Japan modeled the two rings around Chariklo, the smallest body in the Solar System known to have rings (Figure 1). This is the first time an entire ring system has been simulated using realistic sizes ...

Sun's eruptions might all have same trigger

April 26, 2017

Large and small scale solar eruptions might all be triggered by a single process, according to new research that leads to better understanding of the Sun's activity.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.