An unexpected pairing of frustrated molecules

January 21, 2013 by Kristin Manke
An unexpected pairing of frustrated molecules
PNNL researchers built simulations showing how two molecules combine to activate hydrogen, shedding new light on a reaction that could, one day, support hydrogenation for biofuels.

While their shapes frustrate traditional bonding, two unreactive molecules come together and surround themselves within a solvent cage to create a reactive environment and split hydrogen.

Researchers at DOE's Pacific Northwest National Laboratory are revealing the role of the solvent in this process. Splitting a molecule into a proton and a hydride ion (H-), known as activating the hydrogen, is vital for sustainable energy production and storage. The pair of is called a frustrated Lewis pair.

"Conventional wisdom says that frustrated Lewis pairs should not be able to activate hydrogen—but they do. We wanted to know why," said Dr. Greg Schenter, a theoretical chemist on this project.

Turning plant material or other renewable resources into fuels requires adding hydrogen without taking up excessive energy. This requirement demands an effective catalyst. These studies provide fundamental insights into the processes that could one day be used to create that catalyst.

Explore further: Hydrogen storage in nanoparticles works

Related Stories

Hydrogen storage in nanoparticles works

March 31, 2008

Dutch chemist Kees Baldé has demonstrated that hydrogen can be efficiently stored in nanoparticles. This allows hydrogen storage to be more easily used in mobile applications. Baldé discovered that 30 nanometre particles ...

World's fastest nickel-based complex

July 25, 2011

(PhysOrg.com) -- Scientists at Pacific Northwest National Laboratory's Center for Molecular Electrocatalysis and Villanova University designed a nickel-based complex that more than doubled previously reported hydrogen gas ...

Recommended for you

Strength of hair inspires new materials for body armor

January 17, 2017

In a new study, researchers at the University of California San Diego investigate why hair is incredibly strong and resistant to breaking. The findings could lead to the development of new materials for body armor and help ...

Researchers zero-in on cholesterol's role in cells

January 17, 2017

Scientists have long puzzled over cholesterol. It's biologically necessary; it's observably harmful - and nobody knows what it's doing where it's most abundant in cells: in the cell membrane.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.