3-D medical scanner: New handheld imaging device to aid doctors on the 'diagnostic front lines'

October 2, 2012
This is a schematic and picture of a handheld scanner doctors can use to monitor biofilms in the ear. It also shows a picture of a healthy middle ear and one covered with a biofilm.

In the operating room, surgeons can see inside the human body in real time using advanced imaging techniques, but primary care physicians, the people who are on the front lines of diagnosing illnesses, haven't commonly had access to the same technology – until now. Engineers from the University of Illinois at Urbana-Champaign (UIUC) have created a new imaging tool for primary care physicians: a handheld scanner that would enable them to image all the sites they commonly examine, and more, such as bacterial colonies in the middle ear in 3-D, or monitor the thickness and health of patients' retinas. The device relies on optical coherence tomography (OCT), a visualization technology that is similar to ultrasound imaging, but uses light instead of sound to produce the images. The team will present their findings at the Optical Society's (OSA) Annual Meeting, Frontiers in Optics (FiO) 2012, taking place Oct. 14 - 18 in Rochester, N.Y.

To monitor chronic conditions such as ear infections, currently rely on instruments that are essentially magnifying glasses, says UIUC physician and biomedical engineer Stephen Boppart, who will present the team's findings at FiO. The new handheld imaging device would give doctors a way to quantitatively monitor these conditions, and possibly make more efficient and accurate referrals to specialists.

The scanners include three basic components: a near-infrared light source and OCT system, a video camera to relay real-time images of surface features and scan locations, and a microelectromechanical (MEMS)-based scanner to direct the light. Near- of light penetrate deeper into human tissues than other wavelengths more readily absorbed by the body. By measuring the time it takes the light to bounce back from tissue microstructure, computer algorithms build a picture of the structure of tissue under examination.

This is a schematic of the handheld scanner designed by Boppart and his team. The image also shows a picture of a retina taken with the scanner.

Diabetic patients in particular may benefit from the device. About 40 to 45 percent of diabetics develop leaky blood vessels in their retinas – a condition called retinopathy, which can lead to thickening of the retina, blurry vision, and eventually blindness. The handheld OCT device would allow doctors to monitor the health of the retina, potentially catching retinopathy in its early stages. In some cases, changes in the eye could help doctors diagnose diabetes, Boppart says.

Boppart and his team are hopeful that falling production costs combined with smaller, more compact designs will enable more physicians to take advantage of the scanners, and become a common point-of-care tool. Eventually, they would like to see the imagers at work in developing countries as well. He and an international team of collaborators recently received a $5 million National Institutes of Health Bioengineering Research Partnership grant to further refine the device.

Explore further: Nowhere to hide: New device sees bacteria behind the eardrum

More information: Presentation FTu2C.3. "Primary Care Imaging using Optical Coherence Tomography for Advanced Point-of-Care Diagnostics" takes place Tuesday, Oct. 16 at 11:15 a.m. EDT at the Rochester Riverside Convention Center.

Related Stories

Computing the best high-resolution 3-D tissue images

April 23, 2012

Real-time, 3-D microscopic tissue imaging could be a revolution for medical fields such as cancer diagnosis, minimally invasive surgery and ophthalmology. University of Illinois researchers have developed a technique to computationally ...

Rapid, high-resolution 3-D images of the retina

May 2, 2007

In efforts that may improve diagnoses of many eye diseases, researchers will introduce a new type of laser for providing high-resolution 3-D images of the retina, the part of the eye that converts light to electrical signals ...

MIT team takes high-res, 3-D images of eye

April 30, 2007

In work that could improve diagnoses of many eye diseases, MIT researchers have developed a new type of laser for taking high-resolution, 3-D images of the retina, the part of the eye that converts light to electrical signals ...

Shining light on diabetes-related blindness

March 11, 2009

A group of scientists in California is trying to develop a cheaper, less invasive way to spot the early stages of retinal damage from diabetic retinopathy, the leading cause of blindness in American adults, before it leads ...

Recommended for you

Lightning, with a chance of antimatter

November 22, 2017

A storm system approaches: the sky darkens, and the low rumble of thunder echoes from the horizon. Then without warning... Flash! Crash!—lightning has struck.

How the Earth stops high-energy neutrinos in their tracks

November 22, 2017

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second. Now, scientists ...

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

Study shows how to get sprayed metal coatings to stick

November 21, 2017

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.