Martian clay minerals might have a much hotter origin

September 12, 2012, California Institute of Technology

(Phys.org)—Ancient Mars, like Earth today, was a diverse planet shaped by many different geologic processes. So when scientists, using rovers or orbiting spacecraft, detect a particular mineral there, they must often consider several possible ways it could have been made.

Several such hypotheses have been proposed for the formation of , which have been detected from orbit and are sometimes considered indicators that the surface has, in the past, been altered by liquid water. Now, publishing in the journal Nature Geoscience, a team of French and American scientists led by Alain Meunier of the Université de Poitiers and including Caltech's Bethany Ehlmann, has suggested a new, very different possibility.

Previously, planetary scientists considered two hypotheses—both offering the potential for once-habitable environments on Mars—that explain clay . One holds that over long enough periods, contact with liquid water can alter igneous rock, such as basalt, producing clays; the other proposes that waters flowing through the martian subsurface can produce clays through a hydrothermal process.

In the new paper, the authors suggest that the clay minerals instead might have precipitated directly from scalding hot magmas.

"This new hypothesis is less exciting for astrobiology because life could not survive in those types of conditions," says Bethany Ehlmann, an assistant professor of at Caltech and a research scientist at the Jet Propulsion Laboratory. "But all three hypotheses need to be on the table as we consider a given clay-bearing deposit. Each hypothesis has a different implication for the history and of ."

Ehlmann says that scientists hope to use the Curiosity rover and its suite of instruments to study the clays found in sediments at Gale Crater—the that the robotic geologist was sent to explore. However, she notes, clays are typically found in even older igneous bedrock on Mars. Future rover missions would need to study clay formation in that ancient crust to rigorously test the various clay formation hypotheses. "There's more exploration that needs to be done before we understand all the mysteries of Mars," she says.

Explore further: Early Mars may not have been hospitable after all: study

Related Stories

New analysis of clay deposits in ancient Martian Lakes

March 16, 2012

Mars was once a much wetter world than it is now, with hot springs, rivers, lakes and perhaps even oceans. Just how wet exactly, and for how long, is still a subject of considerable debate. One vital clue comes from clay ...

Turning glass into clay

July 6, 2012

The magic mineral and microbial processes that transform volcanic glass into clay have been identified, adding important knowledge to how clay is formed.

Rover arrives at new site on martian surface

August 10, 2011

(PhysOrg.com) -- After a journey of almost three years, NASA's Mars Exploration Rover Opportunity has reached the Red Planet's Endeavour crater to study rocks never seen before.

Recommended for you

Solar-powered rover approaching 5,000th Martian dawn

February 16, 2018

The sun will rise on NASA's solar-powered Mars rover Opportunity for the 5,000th time on Saturday, sending rays of energy to a golf-cart-size robotic field geologist that continues to provide revelations about the Red Planet.

Hubble sees Neptune's mysterious shrinking storm

February 15, 2018

Three billion miles away on the farthest known major planet in our solar system, an ominous, dark storm - once big enough to stretch across the Atlantic Ocean from Boston to Portugal - is shrinking out of existence as seen ...

Kepler scientists discover almost 100 new exoplanets

February 15, 2018

Based on data from NASA's K2 mission, an international team of scientists has confirmed nearly 100 new exoplanets. This brings the total number of new exoplanets found with the K2 mission up to almost 300.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.