First mammalian 'cell phone'

First mammalian 'cell phone'
Researchers from ETH Zurich designed a “cell phone” made of biological components. A “therapeutical call” halts the pathological formation of new blood vessels. Credit: Andrea Lingk / ETH Zurich
(Phys.org)—Researchers from ETH Zurich have quite literally created a "cell phone": they have reprogrammed mammalian cells in such a way that they can "phone" each other via chemical signals.

Telephoning is a mutual exchange of information: A phones B and they both agree what B should do. Once this is done, Party B phones Party A to let him or her know. A no longer phones B. During this two-way communication, are sent, and for their transmission suitable devices are necessary.

Based on this formula, a team of bioengineers headed by Martin Fussenegger and Jörg Stelling at ETH Zurich's Department of Biosystems Science and Engineering in Basel has programmed mammalian in such a way that two cells can communicate via chemical signals. The scientists have thus incorporated a synthetic two-way into mammalian cells for the first time that also responds to concentration differences in the signal . The researchers used suitable signal molecules and constructed "devices" out of biological components that receive, process and respond accordingly to the signals. The devices consist of suitable and their products, proteins, which are linked to each other logically.

System switches itself off

An enzyme produces the amino acid L-tryptophan from indole, which has been introduced into the sender cell from outside. This little molecule enters the receiver cell, which processes the signal. The response to L-tryptophan is that the receiver produces acetaldehyde, which the sender cell can receive. If, after a certain time, a particular concentration of acetaldehyde has been attained or the indole is depleted, the sender cell stops producing L-tryptophan and the system switches itself off again.

"This systematic communication network is quite literally a ''," says Martin Fussenegger. Although other scientists have already developed synthetic for and , theirs is the first for as this cell type is far more complex.

Modules can be reconnected

For their experiment, the Basel-based researchers used so-called HEK cells – human kidney cells, in other words, which are often used in research. Moreover, the biological components necessary to construct the signal network can be used in a modular way. With these modules, the researchers were also able to connect other signal paths, including a signal cascade leading from the sender cell, through the information processing cell to the performing receiver cell without any feedback.

Two-way communication between different cell types is important in multicellular organisms. It regulates inflammatory responses, the development of extremities like hands and feet, controls the body's blood sugar level via insulin and glucagon, and controls the development and maintenance of the vascular system.

Network controls blood-vessel formation

Thanks to their "cell phone", the ETH-Zurich biotechnologists were able to simulate the latter accurately in a cell culture. They placed the sender and receiver module in the culture dish along with a population of endothelial cells, which line the blood-vessel walls. In response to the tryptophan signal, the receiver module formed the messenger VEGF as well as acetaldehyde. This increases the permeability of the endothelial cells, which is a key prerequisite for blood-vessel growth.

Due to the acetaldehyde response, the sender module ultimately produced the signal molecule Ang1, which stops the permeability of the endothelial cells to inhibit blood-vessel growth.

This signal system is also found in the human body. If VEGF spirals out of control, however, too many blood vessels form, which ultimately feeds a growing tumour. The "cell phone" could therefore be a plausible strategy to halt the pathological formation of new blood vessels. "Communication is extremely important in controlling blood vessels," says Fussenegger, "and we hope to be able to use synthetic 'cell phones' to correct or even cure disease-related cell communication systems precisely in the future with a 'therapeutic call'."


Explore further

Molecular algebra in mammalian cells

More information: Bacchus W, Lang M, El-Baba MD, Weber W, Stelling J & Fussenegger m. Synthetic two-way communication between mammalian cells. Nature Biotechnology, Published online 16th Sept 2012. DOI: 10.1038/nbt.2351
Journal information: Nature Biotechnology

Provided by ETH Zurich
Citation: First mammalian 'cell phone' (2012, September 17) retrieved 19 May 2019 from https://phys.org/news/2012-09-mammalian-cell.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments

Sep 17, 2012
An enzyme produces the amino acid L-tryptophan from indole, which has been introduced into the sender cell from outside
Indole is also a product of putrefaction, and "Indole-3-acetic acid (IAA)...is predominantly produced in cells of the apex (bud) and very young leaves of a plant"(Wikipedia), as in the highest concentration of THC in Cannabis can be found there, by the way, and Indole also constitutes the nucleus of hallucinogenic substances like LSD-25 and Silocybin, among others. And, it is also the nucleus of the Indigo dye, that most ancient of colors once known as Tyrian Purple, that can color water the color of wine. It is harvested from a plant found in, and from the shells of some types of mollusks that wash upon, the Eastern shores of the Mediterranean Sea.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more