Researchers discover new uses for high tech alloy

August 22, 2012, Ames Laboratory

( -- Materials scientists at the U.S. Department of Energy's Ames Laboratory, Etrema Products, Inc. (EPI), and the Naval Surface Warfare Center Carderock Division have developed new ways to form a high tech metal alloy which promise new advances in sensing and energy harvesting technologies.

To look at it, a length of wire fabricated in the Ames Laboratory looks much like the kind of steel wire a do-it-yourselfer could pick up at the local hardware store. A sheet form of the material, fabricated by EPI, looks equally unassuming. But these are made of a alloy called Galfenol, and the new forms of this “smart material” may be the key to future manufacturing breakthroughs like the creation of vibration free, quieter motors.

Galfenol, composed primarily of gallium and iron, was co-discovered in 1999 by the Ames Laboratory and the Naval Surface Warfare Center Carderock Division. Galfenol’s unique properties make it change shape when subjected to a magnetic field, and flexible enough for a variety of manufacturing processes.

The three organizations spent a decade designing the alloy, optimizing its properties and developing production processes. Now, they have perfected methods of producing the material in rolled sheet and in wire form, making it possible to use Galfenol-based smart parts in a variety of new applications, especially vehicle technologies, both commercial and military.

“Galfenol exhibits a unique set of material properties that allow us to process it using conventional rolling and wire drawing equipment while at the same time we can develop the anisotropic magnetic properties that we desire,” said Eric Summers, Vice President and Chief Scientist of EPI. “In addition, we can machine Galfenol using standard mills and lathes and weld it to a variety of other materials. I know of no other current smart material that shows this flexibility in processing.”

Tom Lograsso, Director of the Division of Materials and Engineering Science at Ames Laboratory, said the project was built on the collaborative success of the giant magnetostrictive material, Terfenol-D. The goal was to find an alloy with similar properties to Terfenol-D, which changes shape when subjected to a magnetic field, but not as brittle.

“Terfenol is like glass. If you drop it on the floor, it shatters. It also can be very prone to corrosion. Galfenol bounces if you drop it; it can be machined; it can be welded. That has generated some new ideas about how to use this material,” said Lograsso.

Galfenol can be used as a vibration-based energy-harvester; attached to a vehicle motor it could supply power to the large number of sensors present on a vehicle. The material could also be used to supply power to wireless sensor networks via the same energy harvesting capability. The combination of magnetic and mechanical properties could lead to the development of active motor mount technology—creating an environment that actively senses and cancels out motor vibrations, effectively creating a “silent” motor.

“Galfenol is receiving strong interest in the community worldwide. Several companies are developing prototype devices based on Galfenol technology as the power conversion component; the core technology in a vibration-based energy harvester,” said Eric Summers of EPI.

Explore further: Scientists spy Galfenol's inner beauty mark

Related Stories

Scientists spy Galfenol's inner beauty mark

March 25, 2009

( -- The sonar on submarines may get far more sensitive ears in the near future thanks to a mysterious compound developed by the military. Developed over a decade ago, it took a collaboration of scientists from ...

Nano-factory promises great things for graphene science

May 2, 2012

Forty times stronger than steel and conducting electricity ten times better than silicon, graphene is the wonder material that could one day replace silicon in microchips. Now the University is opening a new Graphene Centre ...

Preventing contamination in recycling

March 6, 2012

Aluminum has long been the poster child of recycling. About half of all aluminum used in the United States is now recycled, and this recycling has clear and dramatic benefits: Pound for pound, it takes anywhere from nine ...

A new twist on nanowires

February 22, 2012

Nanowires — microscopic fibers that can be “grown” in the lab — are a hot research topic today, with a variety of potential applications including light-emitting diodes (LEDs) and sensors. Now, a team ...

Recommended for you

Using organoids to understand how the brain wrinkles

February 20, 2018

A team of researchers working at the Weizmann Institute of Science has found that organoids can be used to better understand how the human brain wrinkles as it develops. In their paper published in the journal Nature Physics, ...

Pattern formation—the paradoxical role of turbulence

February 19, 2018

The formation of self-organizing molecular patterns in cells is a critical component of many biological processes. Researchers from Ludwig-Maximilians-Universitaet (LMU) in Munich have proposed a new theory to explain how ...

Converting heat into electricity with pencil and paper

February 19, 2018

Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive ...

Bringing a hidden superconducting state to light

February 16, 2018

A team of scientists has detected a hidden state of electronic order in a layered material containing lanthanum, barium, copper, and oxygen (LBCO). When cooled to a certain temperature and with certain concentrations of barium, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Aug 23, 2012
The price of gallium must have dropped if they are alloying it with iron in large quantitys.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.