Researchers develop simplified approach for high-power, single-mode lasers

Researchers develop simplified approach for high-power, single-mode lasers

(Phys.org)—When it comes to applications like standoff sensing—using lasers to detect gas, explosives, or other materials from a safe distance—the laser's strength is of the utmost importance. A stronger and purer beam means devices can sense danger more accurately from a greater distance, which translates into safer workers, soldiers, and police officers.

Northwestern University researchers have developed a new resonator that creates the purest, brightest, and most powerful single-mode quantum cascade lasers yet at the 8-12 micron range, a wavelength of great interest for both military and industrial use.

A paper describing the findings, "Angled Cavity Broad Area Quantum Cascade Lasers," was published August 21 in the journal Applied Physics Letters.

in the 8-12 micron range is of interest for military and industrial use equally, as almost all chemicals (including nerve gases and toxic industrial chemicals) can be identified by infrared absorption in this range. In addition, the atmosphere is relatively transparent in this , which allows for sensing from a distance.

But to be successful, standoff sensing applications require that laser sources be high-powered, single-mode, and possess good beam quality. Incorporating all three qualities in a single device is a significant challenge, and many sophisticated structures have been proposed with little success.

Manijeh Razeghi, Walter P. Murphy Professor of Electrical Engineering and Computer Science in the McCormick School of Engineering and Applied Science, and her group have created a new laser technology that controls both wavelength and beam quality. The feat is achieved through the use of a new type of "distributed feedback" mechanism called Β-DFB, a simple diffractive feedback in an angled laser cavity.

"Our is the most promising device for creating high-power, single-mode laser sources with good beam quality, and it is inexpensive and can be realized at room temperature," said Razeghi, who leads the Center for Quantum Devices (CQD). "Furthermore the design can be applied to a wide range of semiconductor lasers at any wavelength."

Razeghi and her group demonstrated >6 watts of peak power with nearly diffraction-limited beam quality at a wavelength of 10.4 microns—the highest power single-mode semiconductor laser demonstrated at a wavelength greater than 10 microns. Refinement of the design, particularly related to optimization of the cavity design and improvement of the gain medium, are expected to increase the output power significantly.

The development of the Β-DFB is complementary to active research efforts within CQD, but is not yet directly funded.

Journal information: Applied Physics Letters

Citation: Researchers develop simplified approach for high-power, single-mode lasers (2012, August 24) retrieved 21 June 2024 from https://phys.org/news/2012-08-approach-high-power-single-mode-lasers.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

New quantum cascade lasers emit more light than heat

0 shares

Feedback to editors