The origin of the moon's craters

March 19, 2012, Harvard-Smithsonian Center for Astrophysics
A Hubble image of the asteroid Vesta. A new paper on the origins of the Moon's craters proposes that asteroids from the neighborhood of Mars, some as large as Vesta, could have been responsible. Credit: NASA/Hubble

(PhysOrg.com) -- Moon's craters, together with samples of the surface returned during the Apollo program, tell the story of impacts from two different populations of small bodies. The first rocky collection was gradually depleted over time: About 3.85 billion years ago (the Moon formed about 4.5 billion years ago) there was a cataclysmic heavy bombardment of material onto the surface that lasted only a few hundred million years. The second collection of bodies appears not to have been depleted, however, and their impacts have continued at a steady pace. We observe this latter group today as Earth-orbit-crossing objects, and their numbers are apparently renewed at about the same rate that they are lost. All these details are important to our understanding of the Moon, the history of the bombardment of the Earth by the same populations of asteroids, and - not least - to a better understanding of how the solar system evolved and thus how planetary systems around other stars might look during different stages of their evolution.

One of the outstanding questions in the study of lunar impacts has been where these two sets of bodies came from - especially the population that caused what is known as the heavy . If it were primordial (dating from the early days of the solar system itself), then to cause a heavy bombardment so suddenly the collection must have been disrupted into an unstable configuration, probably by some kind of migration of the planets in their orbits. What caused that migration is not known. But if the collection was not primordial, then where did it come from?

CfA astronomer Matija Cuk offers a new, if still tentative, explanation in the latest issue of the journal Icarus. The details are complicated, but in summary he argues that the data do not support the idea of a simple disruption by planetary migration. Those data include a revised measurement of the size distribution of lunar craters, and the local magnetic fields on the Moon. Cuk proposes that most of the likely impactors came from a population of small, primordial objects whose orbits crossed the of Mars - but not the orbits of either Earth or Jupiter. These objects would have had only slightly unstable configurations because Mars is relatively small, and so provide an intermediate class of solution. Numerical simulations of the behavior of this collection of asteroids suggests that they could have produced most of the lunar craters; the collisional breakup of one very large body in this group and the subsequent impacts from its debris could explain many other features. The new hypotheses need to be confirmed with improved data on lunar craters and compositions, but directly address some basic puzzles of lunar history.

Explore further: Lunar scientists shed light on Moon's impact history

Related Stories

Lunar scientists shed light on Moon's impact history

February 28, 2012

(PhysOrg.com) -- A team of researchers from the NASA Lunar Science Institute (NLSI) at NASA Ames Research Center, Moffett Field, Calif., have discovered that debris that caused a "lunar cataclysm" on the moon 4 billion years ...

Recommended for you

Sprawling galaxy cluster found hiding in plain sight

August 16, 2018

MIT scientists have uncovered a sprawling new galaxy cluster hiding in plain sight. The cluster, which sits a mere 2.4 billion light years from Earth, is made up of hundreds of individual galaxies and surrounds an extremely ...

Unusual doughnut-shaped jet observed in the galaxy NGC 6109

August 15, 2018

Astronomers from the University of Bristol, U.K., have uncovered an unusual doughnut-shaped jet in the radio galaxy NGC 6109. It is the first time that such a jet morphology has been observed in a low-power radio galaxy. ...

Iron and titanium in the atmosphere of an exoplanet

August 15, 2018

Exoplanets, planets in other solar systems, can orbit very close to their host stars. When the host star is much hotter than the sun, the exoplanet becomes as hot as a star. The hottest "ultra-hot" planet was discovered last ...

Unraveling the stellar content of young clusters

August 14, 2018

About twenty-five percent of young stars in our galaxy form in clustered environments, and stars in a cluster are often close enough to each other to affect the way they accrete gas and grow. Astronomers trying to understand ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.