When worlds collide: Researchers harness supercomputers to understand solar storm, magnetosphere

February 7, 2012 by Gregory Scott Jones, Oak Ridge National Laboratory
Homa Karimabadi’s team, in close collaboration with Dr. William Daughton at Los Alamos National Laboratory, is currently using the OLCF’s Jaguar supercomputer to better understand the processes giving rise to space weather.

If the sun is anything, it is reassuring. It rises, sets, and rises again, allowing us to grow crops, get tan, and power homes, just to name a few of humanity's most important life-sustaining functions. No wonder it was considered a deity by countless ancient civilizations.

Like many other things, however, our sun is prettier at a distance. Turns out the sun is a violent place where magnetic fields and spew plumes of radiation into outer space and at Earth, a phenomenon referred to by space physicists as space weather.

Fortunately for us, Earth's magnetic dipole creates a type of shield known as the magnetosphere. Unfortunately, though, it's not perfect. The radiation unleashed by the sun in the form of an ionized gas known as plasma can occasionally sneak past Earth's defenses in a process known as magnetic reconnection, creating the northern lights and on electronics and our daily lives. These solar storms can knock out whole , rendering entire regions without electricity and, ironically, light. So far more than $4 billion in satellite damage from space weather has been documented. And more airlines are beginning to fly closer to the poles, where there is maximum and a potentially greater risk to passengers. While often worshipped the sun, modern humans occasionally have reason to rue it.

When a occurs, the radiation can take anywhere from 1 to 5 days to reach Earth. That's the good news. If we earthlings knew a storm was headed our way, preemptive measures could be taken, preventing power and communication disturbances and the large financial investments needed to recover from such outages.

"When a storm goes off on the sun, we can't really predict the extent of damage that it will cause here on Earth. It is critical that we develop this predictive capability," said Dr. Homa Karimabadi, a space physicist at the University of California-San Diego (UCSD). Karimabadi's team, in close collaboration with Dr. William Daughton at Los Alamos National Laboratory, is currently using the Oak Ridge Leadership Computing Facility's (OLCF's) Cray XT5 Jaguar supercomputer, one of the most powerful in the world with a peak performance of 2.33 petaflops, to better understand the processes giving rise to space weather.

Specifically, Karimabadi has used about 30 million hours on the Department of Energy's premier high-performance computing system to study how plasma spewed from the sun interacts with Earth's magnetosphere, investigating exactly what happens when the two meet and precisely what gets through and why. "One of the surprising outcomes of our research is the ubiquity and nature of turbulence in the magnetosphere," said Karimabadi. "This is important since turbulence implies more efficient mixing of the plasma and fields, and after all, space weather arises because the plasma and fields emanating from the sun can penetrate and mix with the plasma and fields of Earth's magnetosphere."

Initially, the team used the National Science Foundation-funded, University of Tennessee- managed Cray XT5 system known as Kraken to model the magnetic reconnection process that is the major cause of , research that was published in the April 10, 2011, edition of Nature Physics. Their follow-up work using Jaguar has included simulations nearly three times as large as those on Kraken and motivated several observational studies to search for the newly discovered effects from the most recent simulations.

Extracting meaningful knowledge from these simulations poses its own challenges. A single run can generate over 200 terabytes of multi-dimensional, highly complex data. To meet this challenge Karimabadi has been working with Burlen Loring of Lawrence Berkeley National Laboratory on the development of specialized visualization techniques. "By color coding the magnetic field lines in our visualizations of the solar wind and the magnetosphere, we can track the level of mixing," said Karimabadi.

Thanks to the speed and power of systems such as Kraken and Jaguar, this complex mixing phenomenon is finally becoming understandable. While Karimabadi has been at this research for 15 years, only since the advent of petascale computing have the simulations begun coming sufficiently close to reality.

Earlier global modeling of Earth's magnetopshere was based on magnetohydrodynamics simulations, which substituted capability for accuracy, neglecting critical effects in the reconnection process. Essentially the plasma was treated as a fluid, or a single body, an approach that missed critical physical processes but was necessary because of the limitations of yesteryear's computational capabilities.

With petascale computers, though, it has now become possible to model magnetic reconnection, including kinetic effects—the individual particles that make up the ionized gas called plasma ejected by the sun. "If you want to model the plasma correctly," said Karimabadi, "you have to model and resolve the orbits of the electrons and ions in a plasma." Needless to say, the particles are numerous, hence the need for systems such as Jaguar.

"With petascale computing we can now perform 3D global particle simulations of the magnetosphere that treat the ions as particles, but the electrons are kept as a fluid," said Karimabadi. "It is now possible to address these problems at a resolution that was well out of reach until recently."

For example, in 2006 the team's largest simulations contained around 1 billion individual particles. With Jaguar it is now modeling in the neighborhood of 3.2 trillion particles, an increase in resolution that is beginning to reveal the reconnection phenomenon in a whole new light. Turns out there is a lot going on; the team is observing a great deal of electron- and ion-scale structures and turbulence. Essentially the team zooms in on a particular region of the magnetosphere for which they understand the existing conditions. By simulating the region, "you study the in its full glory retaining full electron effects," said Karimabadi. "If you're looking at Saturn with your naked eye, you would see it as a fuzzy ball, but with a powerful telescope, you could see its rings and much finer structures."

Jaguar is one heck of an analogous telescope, and when coupled with Karimabadi's use of two individual codes, H3D and VPIC, the sun's stormy effect on our planet becomes clearer by the simulation. While the two applications are indeed different (H3D is a global code developed at UCSD that treats the ions as particles and the electrons as a fluid, while VPIC, developed at Los Alamos National Laboratory, defines both electrons and ions as particles), they are complementary. H3D gives the team a look at the big picture, while VPIC serves as the magnifying glass, revealing all the gritty, noisy details.

"Our codes are very efficient at using all the available computational power of Jaguar," said Karimabadi, adding that as soon as the fastest hardware comes out, his software is ready to take full advantage. The current simulations on Jaguar use more than 200,000 of the machine's 224,000-plus compute cores, no small feat for even the most aggressive applications. Despite Jaguar's raw computing power, however, there is still plenty of room for improvement.

"The problem in itself is exascale," said Karimabadi, noting that even with today's fastest computers, researchers are still unable to model the magnetosphere in 3D treating ions and electrons as particles, a phenomenon that might be tough to sufficiently simulate even when high-performance computing arrives at its next milestone—the exascale.

And while the exascale era isn't exactly right around the corner, another great machine is. The OLCF is currently standing up Titan, an upgrade to Jaguar that will clock in at a peak speed of somewhere between 10 and 20 petaflops, meaning space physicists such as Karimabadi will soon have a chance to take advantage of even more computing muscle, a union that will certainly produce an unprecedented picture of space weather's effect on Earth's and, by extension, our lives. In the meantime we will continue to weather the sun's storms—literally.

Explore further: Jaguar supercomputer harnesses heat for fusion energy

Related Stories

Jaguar supercomputer harnesses heat for fusion energy

April 18, 2011

University of California-Irvine researcher Zhihong Lin is using the Jaguar supercomputer at Oak Ridge National Laboratory to study fusion reactions, which produce helium from hydrogen and release energy in the process, in ...

ESA’s Cluster flies through Earth’s electrical switch

May 19, 2006

ESA’s Cluster satellites have flown through regions of the Earth’s magnetic field that accelerate electrons to approximately one hundredth the speed of light. The observations present Cluster scientists with their first ...

Honey, I Blew up the Tokamak

August 31, 2009

Magnetic reconnection could be the Universe's favorite way to make things explode. It operates anywhere magnetic fields pervade space--which is to say almost everywhere. On the sun magnetic reconnection causes solar flares ...

Cluster's decade of discovery

July 16, 2010

(PhysOrg.com) -- ESA's pioneering Cluster mission is celebrating its 10th anniversary. During the past decade, Cluster's four satellites have provided extraordinary insights into the largely invisible interaction between ...

Another high-definition plasma

February 24, 2011

(PhysOrg.com) -- The sight of an aurora evokes feelings of mystery and awe in the weekend star gazer and scientist alike. The stargazer may ponder the vastness of our universe or how such vivid color can be created in space, ...

Recommended for you

Neutron-star merger yields new puzzle for astrophysicists

January 18, 2018

The afterglow from the distant neutron-star merger detected last August has continued to brighten - much to the surprise of astrophysicists studying the aftermath of the massive collision that took place about 138 million ...

New technique for finding life on Mars

January 18, 2018

Researchers demonstrate for the first time the potential of existing technology to directly detect and characterize life on Mars and other planets. The study, published in Frontiers in Microbiology, used miniaturized scientific ...

North, east, south, west: The many faces of Abell 1758

January 18, 2018

Resembling a swarm of flickering fireflies, this beautiful galaxy cluster glows intensely in the dark cosmos, accompanied by the myriad bright lights of foreground stars and swirling spiral galaxies. A1758N is a sub-cluster ...


Adjust slider to filter visible comments by rank

Display comments: newest first

2.3 / 5 (3) Feb 07, 2012
Re: "With petascale computers, though, it has now become possible to model magnetic reconnection, including kinetic effectsthe individual particles that make up the ionized gas called plasma ejected by the sun. "If you want to model the plasma correctly," said Karimabadi, "you have to model and resolve the orbits of the electrons and ions in a plasma." Needless to say, the particles are numerous, hence the need for systems such as Jaguar."

There is one other important issue: E-fields can and do occur within these plasmas. The cosmic plasma's resistance should never be assumed to be zero.

See "Why Space Physics Needs to Go Beyond the MHD Box" by George K. Parks


"Importance of electric fields in modeling space plasmas" by George K. Parks

E-fields are in fact observed in space ...

From http://excitonic....e-earth/

[continued ...]
2.3 / 5 (3) Feb 07, 2012
[quote]"The satellite André works on, one of four European Space Agency CLUSTER spacecraft, is equipped with a detector with thin wire arms that measures the electric field between them as the satellite rotates. But, when the scientists gathered data from their detectors, two mysterious trends appeared. Strong electric fields turned up in unexpected regions of space. And as the spacecraft rotated, measurements of the electric field didnt fluctuate in the smoothly changing manner that André expected.

To a scientist, it looked pretty ugly, André said. We tried to figure out what was wrong with the instrument. Then we realized theres nothing wrong with the instrument. Unexpectedly, they found that cold plasma was altering the structure of electrical fields around the satellite. Once they understood that, they could use their field measurements to reveal the presence of the once-hidden ions.[/quote]

[continued ...]
2.3 / 5 (3) Feb 07, 2012
Keep in mind that Hannes Alfven warned the world about this problem more than 40 years ago. Alfven was awarded the Nobel Physics prize for his creation of magnetohydrodynamics, and used the occasion of his acceptance speech to instruct astrophysicists in the proper usage of MHD. He specifically states that E-fields can indeed occur in plasmas.

See http://www.nobelp...ture.pdf

It's both pathetic and mind-boggling that we do not teach this debate to astrophysics students. IEEE's Transactions on Plasma Sciences is to be commended for their continued coverage.

After all, E-fields in cosmic plasmas would offer an incredibly simple and appropriate explanation for the failure of the solar wind to appreciably decelerate, even as it passes the Earth's orbit -- a problem which has proven to be resilient to the conventional gravity-based framework.

It's time for us to investigate this other possibility.
2.3 / 5 (3) Feb 07, 2012
From Alfven's Nobel lecture ...

"The cosmical plasma physics of today is far less advanced than the thermonuclear research physics. It is to some extent the playground of theoreticians who have never seen a plasma in a laboratory. Many of them still believe in formulae which we know from laboratory experiments to be wrong. The astrophysical correspondence to the thermonuclear crisis has not yet come.

I think it is evident now that in certain respects the first approach to the physics of cosmical plasmas has been a failure. It turns out that in several important cases this approach has not given even a first approximation to truth but led into dead-end streets from which we now have to turn back.

[continued ...]
2.3 / 5 (3) Feb 07, 2012
The reason for this is that several of the basic concepts on which the theories are founded, are not applicable to the condition prevailing in cosmos. They are « generally accepted » by most theoreticians, they are developed with the most sophisticated mathematical methods and it is only the plasma itself which does not « understand », how beautiful the theories are and absolutely refuses to obey them. It is now obvious that we have to start a second approach from widely different starting points."

(Alfven then presents a table which suggests that E-fields are "often not zero" in cosmic plasmas).

From the 2nd George Parks paper ...

"Space physics has progressed by making approximations. Instead of solving the fundamental Boltzmann transport equation coupled to Maxwells equation of electrodynamics, the simpler MHD equations have been used. MHD theory relies on the conservation equations of mass, momentum and energy obtained from the first three velocity moments of the Boltzmann ...
2.3 / 5 (3) Feb 07, 2012
... equation. As is well-known, the moments approach produces more unknowns than equations and thus requires additional equations. This closure problem is resolved by assuming plasmas behave like ordinary conductors and Ohms law is added to the set of MHD equations. However, Ohms law requires information on conductivity and conductivity is not precisely defined for collisionless plasmas (Alfve´n and Fa¨ lthammer, 1963). This important issue is often ignored by arguing that electric fields in plasmas are small and thus negligible. The ideal MHD approximation treats plasmas as having infinite conductivity disregarding any resistive effects. MHD also uses an adiabatic
equation of state assuming plasmas are in thermal equilibrium rather than solving the energy transport equation. While interesting concepts result from treating plasmas as ideal, these ideal concepts do not describe the behavior of real space plasmas."

Cosmology literally hinges on these cosmic plasma equations.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.