A study describes liquid water diffusion at molecular level

February 24, 2012, University of Granada

An article published in Physical Review E and conducted by Spanish researchers at the universities of Granada and Barcelona might lead to a revolutionary change in water desalination and filtration methods.

Researchers at the universities of Granada and Barcelona have described for the first time the diffusion of liquid water through nanochannels in molecular terms; nanochannels are extremely tiny channels with a of 1-100 nanometers that scientists use to study the behavior of (nm. a unit of length in the metric system equal to one billionth of a meter that is used in the field of nanotechnology).

This study might have an important impact on water desalinization and filtration methods. Two articles published in Science state that the introduction of graphene membranes and carbon nanolayers will revolutionize water desalinization and filtration processes, as water diffuses rapidly through these materials when their are 1nm in diameter.

Liquid water exhibits a range of unusual properties that other do not have: up to 65 abnormalities. Some of these abnormalities have been known for 300 years, as the fact that water expands below 4ºC.

Many of the abnormalities found in water have a dynamic nature -e.g. water molecules move faster as density increases-, as a result of the properties of the hydrogen bond networks that form between water molecules; hydrogen bonds lead to the formation of tetrahedral structures wherein a central atom is located at the center with four molecules located at the corners. However, this geometrical structure changes with pressure and temperature and, until now, changes in the molecular structure and properties of had not been described.

A Mystery to Solve

Particularly confusing are the results on the diffusion of water confined between two hydrophobic plates. Neither experiments nor computer-based models have clarified whether confinement increases or reduces the mobility of water molecules. However, it seems that the mobility of relies on ducts having a diameter above or below 1nm.

In a study published in the prestigious journal Physical Review, professors Francisco de los Santos Fernández (University of Granada) and Giancarlo Franzese (University of Barcelona) described the behavior of water confined between two hydrophobic plates. In their study, Franzese and Fernandez used models to demonstrate that the diffusion of nanoconfined water is unusually fast, as a result of the competition between the formation and breaking of hydrogen bonds, and the free volume available for cooperative molecule rearrangement.

In nanochannels above 1 nm in diameter, macroscopic diffusion of water only occurs if there is a cooperative rearrangement of molecules, which leads to HB breaking within a cooperative region of 1nm in size. On the other hand, increases in nanochannels below 1 nm, as fewer HBs need to be broken. Thus, this study proves that the interplay between hydrogen bond breaking and cooperative rearranging within regions of 1-nm determine the macroscopic properties of .

Explore further: Study sheds light on the mysterious structure of water-air interface

More information: F. de los Santos and G. Franzese, Phys. Rev. E 85, 010602(R) (2012). link.aps.org/doi/10.1103/PhysRevE.85.010602

Related Stories

Disorder is key to nanotube mystery

August 12, 2011

Scientists often find strange and unexpected things when they look at materials at the nanoscale -- the level of single atoms and molecules. This holds true even for the most common materials, such as water.

How do protein binding sites stay dry in water?

October 21, 2011

In a report to be published soon in EPJE¹, researchers from the National University of the South in Bahía Blanca, Argentina studied the condition for model cavity and tunnel structures resembling the binding sites ...

Recommended for you

Walking crystals may lead to new field of crystal robotics

February 23, 2018

Researchers have demonstrated that tiny micrometer-sized crystals—just barely visible to the human eye—can "walk" inchworm-style across the slide of a microscope. Other crystals are capable of different modes of locomotion ...

Seeing nanoscale details in mammalian cells

February 23, 2018

In 2014, W. E. Moerner, the Harry S. Mosher Professor of Chemistry at Stanford University, won the Nobel Prize in chemistry for co-developing a way of imaging shapes inside cells at very high resolution, called super-resolution ...

Researchers turn light upside down

February 23, 2018

Researchers from CIC nanoGUNE (San Sebastian, Spain) and collaborators have reported in Science the development of a so-called hyperbolic metasurface on which light propagates with completely reshaped wafefronts. This scientific ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Callippo
not rated yet Feb 24, 2012
The expansion of ice during freezing indicates, the molecules within bulk watter are compressed mutually by a force in range of 270 kbars. As the result, the water molecules form a dynamic clusters of icosahedral geometry, each containing about 240 molecules of water. These clusters behave like rigid, solid objects maintaining their shape like jelly at the 15 nm dimensional scale, which leads into many anomalous phenomena. The passing the water trough channels breaks these clusters and inside of pores the water is behaving like low-molecular fluid, analogous to hydrogen sulphide or similar gases. You can face the anomalous low viscosity of thin layers of water during crunching of fresh snow under your feet.
Callippo
not rated yet Feb 24, 2012
BTW you can visit the Giancarlo Franzeses group site for preprint of this study and more info.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.