Researchers participate in network science to challenge long-held ecological theory

October 7, 2011 By Kimberly Sorensen

( -- For decades, ecologists have toiled to nail down general principles explaining why some habitats have so many more plant and animal species than others. Much of this debate is focused on the idea that the number of species is determined by the productivity of the habitat. Some would argue: Shouldn't a patch of prairie contain a different number of species than an arid steppe or an alpine tundra?

Maybe not, says an international team of scientists, including two faculty members from CSU, which pooled its resources to re-evaluate the between and . Julia Klein, assistant professor in CSU’s Department of Ecosystem Science & Sustainability in the Warner College of Natural Resources, and Cynthia Brown, associate professor in the Department of Bioagricultural Sciences and Pest Management in the College of Agricultural Sciences, were among the scientific team whose findings appear in the Sept. 23 issue of the journal Science.

Their innovative, standardized global sampling of 48 sites on five continents, which are part of the Nutrient Network, yielded an unprecedented data set and findings that represent a significant advance in ecological thought. “Our study shows no clear relationship between productivity and the number of plant species in small study plots,” said Utah State University plant ecologist Peter Adler, the lead author of the study. Adler received his doctorate degree from CSU’s Graduate Degree Program in Ecology in 2003.
“We challenged a prevailing model developed in the early 1970s by British ecologist J. Philip Grime,” Adler said. “He proposed that the number of species rises then declines with increasing productivity.”

Though hotly debated, this “hump-shaped” model has remained a textbook standard for nearly four decades. However, existing, disparate case studies couldn’t conclusively support Grime’s unimodal pattern. Inconsistencies in data collection methods further hampered efforts to distill reliable empirical evidence to support the hump-shaped model.

The Nutrient Network, or NutNet, is a cooperative research initiative dedicated to investigating biodiversity and ecosystem processes in grasslands around the world. The initiative provided a unique opportunity to address this question through a coordinated, grassroots, ecological data collection and analyses effort. The network is based at the University of Minnesota, and its coordination is currently funded by the National Science Foundation. Klein, Brown and collaborator Dana Blumenthal from the U.S. Department of Agriculture-Agricultural Research Station (USDA-ARS), along with graduate student Laura Dev, have contributed to the network since 2007, when they established two NutNet study sites. One is located at the Shortgrass Steppe Long Term Ecological Research site near Nunn, Colo., and another is at the USDA-ARS High Plains Grassland Research Station near Cheyenne, Wyo.

“Grasslands are inhabited by approximately 40 percent of the world’s population,” Klein said. “This study suggests there are other factors aside from productivity that explain patterns of plant diversity across grassland systems globally. Since humans are having such profound effects on climate, resource supply and disturbance regimes, understanding the role these factors play in affecting grassland diversity and its effects on ecosystem processes has critical implications for the well-being of the populations that rely on the essential ecological services that these grasslands provide.”

“Studies comparing plant communities across ecosystems can help us understand what causes the patterns we see, and understanding the mechanisms underlying the patterns can help us manage our natural resources more effectively,” Brown said.

Explore further: Over the hump: Ecologists use power of network science to challenge long-held theory

Related Stories

New plant ecology study challenges conventional wisdom

September 26, 2011

( -- An international team of 58 ecologists, including UC Davis researcher Louie Yang, has found that habitat productivity does not predict the quantity or diversity of plant species, as has been assumed for several ...

The grass is always greener

August 19, 2011

( -- Recent study of grasslands shows that species variety more important to ecosystem services than previously thought.

What's so unique about the tropics? 'Less than we thought'

September 23, 2011

( -- The temperate forests of Canada or Northern Europe may have much more in common with the tropical rainforests of Southeast Asia or South America than commonly believed, according to a research group led by ...

Recommended for you

Scientists create first stable semisynthetic organism

January 23, 2017

Life's genetic code has only ever contained four natural bases. These bases pair up to form two "base pairs"—the rungs of the DNA ladder—and they have simply been rearranged to create bacteria and butterflies, penguins ...

New steps in the meiosis chromosome dance

January 23, 2017

Where would we be without meiosis and recombination? For a start, none of us sexually reproducing organisms would be here, because that's how sperm and eggs are made. And when meiosis doesn't work properly, it can lead to ...

Research describes missing step in how cells move their cargo

January 23, 2017

Every time a hormone is released from a cell, every time a neurotransmitter leaps across a synapse to relay a message from one neuron to another, the cell must undergo exocytosis. This is the process responsible for transporting ...

Lab charts the anatomy of three molecular channels

January 23, 2017

Using a state-of-the-art imaging technology in which molecules are deep frozen, scientists in Roderick MacKinnon's lab at Rockefeller University have reconstructed in unprecedented detail the three-dimensional architecture ...

Immune defense without collateral damage

January 23, 2017

Researchers from the University of Basel in Switzerland have clarified the role of the enzyme MPO. In fighting infections, this enzyme, which gives pus its greenish color, produces a highly aggressive acid that can kill pathogens ...

Provocative prions may protect yeast cells from stress

January 23, 2017

Prions have a notorious reputation. They cause neurodegenerative disease, namely mad cow/Creutzfeld-Jakob disease. And the way these protein particles propagate—getting other proteins to join the pile—can seem insidious.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.