Nanobelts support manipulation of light

October 14, 2011, Rice University

( -- They look like 2-by-4s, but the materials being created in a Rice University lab are more suited to construction with light.

Researcher Jason Hafner calls them "nanobelts," microscopic strips of gold that could become part of highly tunable sensors or nanomedical devices.

Hafner, an associate professor of physics and astronomy and of chemistry, and his colleagues reported their discovery online this week in the American Chemical Society journal .

Nanobelts represent a unique way to manipulate light at the . They join smaller like gold nanorods and that can be tuned to absorb light strongly at certain wavelengths and then steer the light around or emit it in specific directions.

The effect is due to , which occur when in a metal or doped interact strongly with light. When prompted by a laser, the sun or other energy source, they oscillate like ripples on a pond and re-emit energy either as light or heat. They are the focus of much research for their potential benefits in , molecular sensing and microelectronics.

Nanobelts are unique because the plasmonic waves occur across their width, not along their length, Hafner said. "My intuition says that isn't likely. Why would you get a sharp resonance in the short direction when the electrons can go long? But that's what happens."

Nanobelts at a particular (or color), depending on the aspect ratio of their cross sections – width divided by height. That makes them highly tunable, Hafner said, by controlling that aspect ratio.

He was quick to point out his lab didn't make the first gold nanobelts. "We first searched the literature for a way to make a structure that might have a sharp resonance, because we wanted a large field enhancement," he said, referring to a technique he uses to characterize the effect of local environment on nanoparticle emissions.

The team found what it was looking for in a 2008 Langmuir paper by a Peking University team. "They made the same structure, but they didn’t look too closely at the optical properties," he said. "They did beautiful work to discover the crystal structure and the growth direction, and they demonstrated the use of nanobelts in catalysis.

"As soon as we looked at the sample in a dark-field microscope, we instantly saw colors. We just couldn't believe it."

Hafner, a 1996 Rice alum who studied with the late Nobel laureate Richard Smalley, said growing nanobelts is a slow process. It takes 12 hours to synthesize a batch of nanobelts, which appear to grow in clusters from a central nucleus.

The team has grown nanobelts up to 100 microns long that range from basic square cross sections -- 25-by-25 nanometers -- to flattened, at 100 nanometers wide by 17 nanometers high. They found that the flatter the nanobelt, the more the scattered light shifted toward red.

"People have studied electrons moving the long way in these kinds of materials, but when they get too long the resonances detune out of the visible and the peaks become so broad that there's no sharp resonance anymore," Hafner said. "We're going across the nanobelt, so length doesn't matter. The nanobelt could be a meter long and still show sharp plasmon resonance."

Co-authors of the paper are graduate students Lindsey Anderson, Courtney Payne and Yu-Rong Zhen and Peter Nordlander, a professor of physics and astronomy and in electrical and computer engineering.

Explore further: New technique can sense movement of single molecules over hours

More information: Read the abstract at

Related Stories

Zinc Oxide Nanostructures: Growth, Properties and Applications

June 26, 2004

An article of the same name recently published by Dr. Zhong Lin Wang in the Journal of Physics: Condensed Matter reviews various nanostructures of ZnO grown by the solid–vapour phase technique and their corresponding growth ...

Bimetallic nanoantenna separates colors of light

September 23, 2011

Researchers at Chalmers University of Technology have built a very simple nanoantenna that directs red and blue colours in opposite directions, even though the antenna is smaller than the wavelength of light. The findings ...

Twisted crystals point way toward active optical materials

September 29, 2011

( -- A nanoscale game of "now you see it, now you don't" may contribute to the creation of metamaterials with useful optical properties that can be actively controlled, according to scientists at Rice University.

Recommended for you

Scientists create gold nanoparticles in water

April 19, 2018

An experiment that, by design, was not supposed to turn up anything of note instead produced a "bewildering" surprise, according to the Stanford scientists who made the discovery: a new way of creating gold nanoparticles ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Oct 14, 2011
Am I the only one thinking LIGHT SABER? This could be the first step towards the manipulation of light in order to create the LIGHT SABER I have always dreamed. Talk to me people. How can I make my dreams come true?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.