Optofluidics could improve energy applications

September 13, 2011 By Anne Ju
A bioreactor with an open pond like this one, which uses photosynthesis to make fuels, could be improved with the use of optofluidic technologies. (Cellana)

(PhysOrg.com) -- The ability to manipulate light and fluids on a single chip, broadly called "optofluidics," has led to such technologies as liquid-crystal displays and liquid-filled optical fibers for fast data transfer. Optofluidics is now also on the cusp of improving such green technologies as solar-powered bioreactors, say Cornell researchers.

The biggest challenge, says Cornell's David Erickson, associate professor of mechanical and aerospace engineering, is how to upscale optofluidic chips, which are built at nanometer scales, to deliver enough energy to make a difference. These challenges and opportunities are detailed in a Review article by Erickson and two colleagues, published online Sept. 11.

"Over the last five years or so, we have developed many new technologies to precisely deliver light and fluids and biology to the same place at the same time," Erickson said. "It's these new tools that we want to apply to the area of energy."

For example, photobioreactors are large-scale systems that use microorganisms such as algae or cyanobacteria, to convert light and carbon dioxide into hydrocarbon fuels. Photobioreactors employ photosynthesis for , and Erickson envisions using an optofluidic chip to optimize how light and chemicals are distributed in the reactor.

In such systems as open-air ponds that harvest algae and collect sunlight, the light is scattered haphazardly, and the top layer gets more exposure. Optofluidic technologies, such as plasmonic nanoparticles or photonic waveguides, could more directly target the microorganisms and lead to greater .

Similarly, the paper also describes how optofluidic devices could be used to improve photocatalytic systems, in which light energy splits water into the components hydrogen and oxygen, or converts carbon dioxide and water into . Other applications include optofluidic chips in .

Erickson authored the review with Demetri Psaltis of Ecole Polytechnique Federal Lausanne, Switzerland, and David Sinton of the University of Toronto. His research is supported by the Academic Venture Fund of Cornell's Atkinson Center for a Sustainable Future and the National Science Foundation. Erickson is also a member of the Kavli Institute at Cornell for Nanoscale Science.

Explore further: A guiding light for new directions in energy production

Related Stories

A guiding light for new directions in energy production

September 11, 2011

The science of light and liquids has been intimately entwined since Léon Foucault discovered the speed of light in 1862, when he observed that light travels more slowly in water than in air. This physical harmony between ...

Using light to move and trap DNA molecules

January 2, 2009

(PhysOrg.com) -- A major goal of nanotechnology research is to create a "lab on a chip," in which a tiny biological sample would be carried through microscopic channels for processing. This could make possible portable, fast-acting ...

Research on New Types of Optical Devices Modifies Optics

July 30, 2004

The Defense Advanced Research Projects Agency (DARPA) has awarded an $8 million, four-year, basic-research program grant to the California Institute of Technology to initiate research in photonics technologies. The technical ...

Sunlight turns carbon dioxide to methane

March 5, 2009

Dual catalysts may be the key to efficiently turning carbon dioxide and water vapor into methane and other hydrocarbons using titania nanotubes and solar power, according to Penn State researchers.

Recommended for you

Solution to mysterious behavior of supercooled water

October 23, 2017

When Einstein was working toward his PhD, he was among the first to explain how particles exhibit random motions in fluids. Diffusion is an important physical process and the Stokes–Einstein relationship describes how particles ...

Fast 3-D microscope with nano precision

October 23, 2017

A fast 3-D optical microscope which can acquire a full field image of the surfaces of objects at nanoscale resolution was developed recently in the lab of Prof. Ibrahim Abdulhalim (pictured right) in the Unit of Electro-Optical ...

Two teams independently test Tomonaga–Luttinger theory

October 20, 2017

(Phys.org)—Two teams of researchers working independently of one another have found ways to test aspects of the Tomonaga–Luttinger theory that describes interacting quantum particles in 1-D ensembles in a Tomonaga–Luttinger ...

Using optical chaos to control the momentum of light

October 19, 2017

Integrated photonic circuits, which rely on light rather than electrons to move information, promise to revolutionize communications, sensing and data processing. But controlling and moving light poses serious challenges. ...

Black butterfly wings offer a model for better solar cells

October 19, 2017

(Phys.org)—A team of researchers with California Institute of Technology and the Karlsruh Institute of Technology has improved the efficiency of thin film solar cells by mimicking the architecture of rose butterfly wings. ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Sep 13, 2011
After reading the article on electrowetted capilary lenses I could see little nanoscale " docking stations " where algae or cyanobacteria could " dock " for power in a substrate with high surface area.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.