uFSRFE: Stretchable electronics report how you feel

June 16, 2011
Schematic drawings of the integration procedure for the demonstrated microfluidic stretchable wireless strain sensor. Image: Wiley, DOI: 10.1002/adfm.201002508

(PhysOrg.com) -- Electronics that can be bent and stretched might sound like science fiction. But Uppsala researcher Zhigang Wu, working with collaborators, has devised a wireless sensor that can stand to be stretched. For example, the sensor can measure intensive body movements and wirelessly send information directly to a computer. The findings are now being presented in the journal Advanced Functional Materials.

Robots of , as in the Terminator movies, are probably the best-known cases of deformable electronic systems. But so far this only exists in our imagination. Twisting, folding, and stretching fragile conventional electronics is not yet possible.

The latest advances in the field of µFSRFE (microfluidic stretchable radio frequency electronics) have shown the possibility of combining established stiff electronics components with channels of elastomers filled with fluid metal. In this way it has been possible to construct systems that after severe mechanical deformation can manage to return to their original form. Such electronics can adapt to nearly any bent and moving surfaces on a human being or a and can thus serve as a second layer of smart e-skin for health monitoring or remote control.

The researcher Zhigang Wu from Uppsala University, in collaboration with researchers at the company Laird Technologies, has presented a newly developed and wireless µFSRFE sensor consisting of a multifunctional antenna integrated with a conventional rigid circuit board. The reporting sensor can measure intensive and wirelessly send information directly to a computer. The design enables wireless measurement of repeated bending across a large area or moveable parts.

The sensor they designed will pave the way for myriad new applications that until now have only been seen on the movie screen.

Explore further: Researchers make new electronics -- with a twist

More information: ”A Microfluidic, Reversibly Stretchable, Large-Area Wireless Strain Sensor”, Shi Cheng and Zhigang Wu, Advanced functional materials, DOI: 10.1002/adfm.201002508

This article describes the implementation and characterization of a new self-contained large-area wireless strain sensor, operating around 1.5 GHz, based on the concept of multi-layer microfluidic stretchable radiofrequency electronics (μFSRFEs). Compared to existing solutions, the presented integrated strain sensor is capable of remotely detecting repeated high tensile dynamic strains of up to 15% over very large surfaces or movable parts, and gets rid of all hardwiring to external storage or data processing equipment. Unlike conventional electronic devices, the major part of the sensor is a mechanically reconfigurable and reversibly deformable patch antenna, which consists of two layers of liquid metal alloy filled microfluidic channels in a silicone elastomer. A simplified radiofrequency (RF) transmitter composed of miniaturized rigid active integrated circuits (ICs) associated with discrete passive components was assembled on a flexible printed circuit board (FPCB) and then heterogeneously integrated to the antenna. The elastic patch antenna can withstand repeated mechanical stretches while still maintaining its electrical function to some extent, and return to its original state after removal of the stress. Additionally, its electrical characteristics at frequency of operation are highly sensitive to mechanical strains. Consequently, not only is this antenna a radiator for transmitting and receiving RF signals like any other conventional antennas, but also acts as a reversible large-area strain sensor in the integrated device. Good electrical performance of the standalone antenna and the RF transmitter sub-module was respectively verified by experiments. Furthermore, a personal computer (PC)-assisted RF receiver for receiving and processing the measured data was also designed, implemented, and evaluated. In the real-life demonstration, the integrated strain sensor successfully monitored periodically repeated human body motion, and wirelessly transmitted the measured data to the custom-designed receiver at a distance of 5m in real-time.

Related Stories

Researchers make new electronics -- with a twist

November 19, 2008

They've made electronics that can bend. They've made electronics that can stretch. And now, they've reached the ultimate goal -- electronics that can be subjected to any complex deformation, including twisting.

Advances in wireless biosensor technology

October 18, 2005

Led by Professor Jukka Lekkala, the Wireless research project is developing miniscule subcutaneous sensors, which can be used to monitor, for example, the function of the heart or prosthetic joints even over long periods ...

Recommended for you

A not-quite-random walk demystifies the algorithm

December 15, 2017

The algorithm is having a cultural moment. Originally a math and computer science term, algorithms are now used to account for everything from military drone strikes and financial market forecasts to Google search results.

FCC votes along party lines to end 'net neutrality' (Update)

December 14, 2017

The Federal Communications Commission repealed the Obama-era "net neutrality" rules Thursday, giving internet service providers like Verizon, Comcast and AT&T a free hand to slow or block websites and apps as they see fit ...

US faces moment of truth on 'net neutrality'

December 14, 2017

The acrimonious battle over "net neutrality" in America comes to a head Thursday with a US agency set to vote to roll back rules enacted two years earlier aimed at preventing a "two-speed" internet.

The wet road to fast and stable batteries

December 14, 2017

An international team of scientists—including several researchers from the U.S. Department of Energy's (DOE) Argonne National Laboratory—has discovered an anode battery material with superfast charging and stable operation ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.