Probing the secrets of the ryegrasses

June 20, 2011, Ludwig-Maximilians-Universitat Munchen

Loline alkaloids protect plants from attack by insects and have other interesting features that have yet to be studied in detail. Chemists from Ludwig-Maximilians-Universitaet in Munich, Germany, have developed a method for the effective synthesis of these compounds, which will facilitate further investigations in biology and medicine.

Chemists from Ludwig-Maximilians-Universitaet in Munich led by Professor Dirk Trauner have developed a concise and efficient method for the synthesis of the alkaloid loline and related compounds. Loline alkaloids are a biologically interesting group of natural products, which have unusual physicochemical and pharmacological characteristics, but are as of yet poorly understood. They are produced by fungal symbionts that infect weeds and , and act as deterrents of insects and other herbivores. Some of the agents synthesized by endophytic fungi are toxic to , producing a syndrome known as the staggers.

Indeed, such toxic weeds (commonly called ryegrass or cockle) were much feared in antiquity and are mentioned both by Virgil and in the New Testament. Lolines however are comparatively innocuous to mammalian herbivores, and might therefore be of some therapeutic use. The loline alkaloid temuline has attracted particular attention in another context because it can strongly bind carbon dioxide. Lolines are relatively small molecules and have a fairly simple structure, but of the compounds has proven to be quite challenging.

"Our synthetic route is highly efficient and, with a maximum of 10 steps, very short," says Dirk Trauner, who led the project. "It will allow us to make these compounds in sufficient quantities to enable their various aspects to be investigated in detail. We should then be able to dissect the of interactions of the plants and their fungal parasites with insects and bacteria. We now plan to use our synthetic material to identify the receptor for loline ."

Explore further: Periwinkle can serve as tiny chemical plant

Related Stories

Periwinkle can serve as tiny chemical plant

November 16, 2006

MIT researchers have discovered a way to manipulate the chemistry taking place in the tiny periwinkle plant to produce novel compounds that could have pharmacological benefits.

Chemists synthesize herbal alkaloid

April 15, 2009

The club moss Lycopodium serratum is a creeping, flowerless plant used in homeopathic medicine to treat a wide variety of ailments. It contains a potent brew of alkaloids that have attracted considerable scientific and medical ...

Chemists engineer plants to produce new compounds

January 19, 2009

(PhysOrg.com) -- In work that could expand the frontiers of genetic engineering, MIT chemists have, for the first time, genetically altered a plant to produce entirely new compounds, some of which could be used as drugs against ...

Recommended for you

New theory shows how strain makes for better catalysts

April 20, 2018

Brown University researchers have developed a new theory to explain why stretching or compressing metal catalysts can make them perform better. The theory, described in the journal Nature Catalysis, could open new design ...

Machine-learning software predicts behavior of bacteria

April 19, 2018

In a first for machine-learning algorithms, a new piece of software developed at Caltech can predict behavior of bacteria by reading the content of a gene. The breakthrough could have significant implications for our understanding ...

Spider silk key to new bone-fixing composite

April 19, 2018

UConn researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

GLUT5 fluorescent probe fingerprints cancer cells

April 19, 2018

Determining the presence of cancer, as well as its type and malignancy, is a stressful process for patients that can take up to two weeks to get a diagnosis. With a new bit of technology—a sugar-transporting biosensor—researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.