Chemists engineer plants to produce new compounds

January 19, 2009
Tissue of a periwinkle plant Photo: Donna Coveney

(PhysOrg.com) -- In work that could expand the frontiers of genetic engineering, MIT chemists have, for the first time, genetically altered a plant to produce entirely new compounds, some of which could be used as drugs against cancer and other diseases.

The researchers, led by Sarah O'Connor of the Department of Chemistry, produced the new compounds by manipulating the complex biosynthetic pathways of the periwinkle plant. This sort of manipulation, which O'Connor and her graduate student, Weerawat Runguphan, report in the Jan. 18 issue of Nature Chemical Biology, offers a new way to tweak potential drugs to make them less toxic (and/or more effective).

Genetic engineering is not new: Scientists have known for years how to get plants to resist pests and herbicides or to produce substances such as insecticides by inserting genes from other plants or animals. What is new, however, is the ability to induce plants to create new products by tinkering with the plants' own synthetic pathways.

O'Connor's laboratory has studied periwinkle for several years because it produces a variety of alkaloid compounds of pharmacological interest, including vinblastine, a drug commonly used to treat cancers such as Hodgkin's lymphoma.

Periwinkle also produces serpentines, which have shown promise as anti-cancer agents, and ajmalicine, which is used to treat hypertension. Other plant-produced compounds have shown pharmacological activity but are too toxic for use in humans.

The current work builds on research O'Connor and grad student Elizabeth McCoy reported two years ago. They found that periwinkle cell cultures could produce novel compounds if fed starting materials slightly different from their normal substrates.

"That inspired us to think about metabolic engineering in a much more sophisticated way," said O'Connor, the Latham Family Career Development Associate Professor of Chemistry. "We can virtually re-engineer the pathway."

O'Connor and Runguphan focused on an enzyme involved in an early step of the alkaloid synthesis pathway. The enzyme normally accepts a terpenoid called secologanin and tryptamine, an alkaloid, as substrates.

Another graduate student, Peter Bernhardt, engineered a mutant form of the enzyme that can accept tryptamine with a halogen (such as chlorine or bromine) attached. Runguphan grew genetically engineered plant cell cultures that produce the mutant enzyme and got them to synthesize several compounds that periwinkle plants would normally never produce.

The halogens could serve as points of attachment to add other novel chemical groups to the compounds, modifying their effectiveness and/or toxicity as drugs, said O'Connor.

So far all of the genetic engineering has been done in plant cell cultures, but Runguphan has started growing a tiny whole periwinkle plant with the mutant enzyme.

In the future, the researchers plan to use the same approach to produce additional compounds, in hopes of creating new and more effective drug candidates.

The research was funded by the National Science Foundation, the National Institutes of Health and the American Cancer Society.

Provided by MIT

Explore further: Separating side effects could hold key for safer opioids

Related Stories

Separating side effects could hold key for safer opioids

November 16, 2017

Opioid pain relievers can be extremely effective in relieving pain, but can carry a high risk of addiction and ultimately overdose when breathing is suppressed and stops. Scientists have discovered a way to separate these ...

Plat du jour: Cultured plant cells kitchen-grown

November 5, 2017

(Tech Xplore)—A Big Idea to chew on: What if we could shake up the relationships between food production and food consumption in such a way that may benefit more people? Research in Finland offers tantalizing signs that ...

Why we still don't understand sleep, and why it matters

October 23, 2017

One of my first jobs was to keep a lookout for lions. There are some occupations that are not suitable for someone with untreated narcolepsy and this is probably one of them. I was 22, a recent zoology graduate studying meerkats ...

Recommended for you

Old, meet new: Drones, high-tech camera revamp archaeology

November 24, 2017

Scanning an empty field that once housed a Shaker village in New Hampshire, Jesse Casana had come in search of the foundations of stone buildings, long-forgotten roadways and other remnants of this community dating to the ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

E_L_Earnhardt
not rated yet Jan 19, 2009
Danger, DANGER! We have almost learned what to touch and what to eat, (and not eat or touch!)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.