Using supercomputers to understand the super stars of the cosmos

April 25, 2011 By Miles O'Brien and Marsha Walton, National Science Foundation
Scientists in California have discovered a new way that stars explode. The discovery hinges on an unusual explosion in the galaxy NGC 1821, roughly 160 million light years away, according to astronomer Dovi Poznanski of the Lawrence Berkeley National Laboratory. Light from the exploding star reached Earth in 2002 and was recorded by a robotic telescope at Lick Observatory, near San Jose, Calif. Credit: Tony Piro (2005)

(PhysOrg.com) -- Is it a high-speed graphic animation of a yellow-golden cauliflower erupting in fast motion? No. Maybe it's some kind of time-lapse, computer-generated X-ray of a brain as it grows over years. No.

It's one of many images Princeton University astrophysicist Adam Burrows has conjured up, using supercomputers to simulate an explosion deep within a star called a supernova. It's not a run-of-the-mill that fuels a healthy star. Instead, it's the kind of explosion that seals a star's fate.

"The rest of the star, its surface, and most of its mass are completely oblivious to its impending fate, but the explosion, which will take just a few seconds, will propagate through the star on periods of hours to a day," explains Burrows.

With help from the National Science Foundation (NSF), Burrows uses supercomputers to create spectacular 3-D images of that allow him to peer inside these super just before they explode.

"One of the things we discovered is that it doesn't explode as a ring expanding out. It explodes in tendrils and fingers, very turbulently," continues Burrows. "The material that's ejected in the supernovae will then start to collapse. Some of that gas will form the next generation of stars and you'll go through the same cycle again."

Supernovae are also the source of many of the heavy elements of nature. In fact, without them, there would be no "us!"

"Some of the heavy elements manufactured in supernovae include the calcium that's in your bones, the fluoride in your toothpaste, and the iron in your blood," says Burrows.

It takes a lot of star power to make those elements. "When supernovae explode, they release the equivalent of 10 to the 28th [or ten octillion] megatons of TNT in energy. One megaton alone is the explosive equivalent of one of the largest hydrogen bombs," Burrows points out.

The of supernovae are created using complex mathematical models and take months to process. "Being able to understand the explosions with these simulations is a milestone in theoretical astrophysics," notes Burrows.

Only stars that have about eight times the mass of our sun will die this type of violent death. Burrows says that our sun is a pretty boring star compared to what else is out there.

Explore further: Sounds of Star Death Near Middle C

Related Stories

Sounds of Star Death Near Middle C

January 24, 2006

Scientists have made the astonishing discovery that sound might drive supernovae explosions. Their computer simulations say that dying stars pulse at audible frequencies -- for instance, at about the F-note above middle C ...

The origin of supernovae confirmed

March 19, 2009

Where do supernovae come from? Astronomers have long believed they were exploding stars, but by analysing a series of images, researchers from the Dark Cosmology Centre at the Niels Bohr Institute, University of Copenhagen ...

Super Supernova: White Dwarf Star System Exceeds Mass Limit

March 15, 2010

(PhysOrg.com) -- An international team led by Yale University has, for the first time, measured the mass of a type of supernova thought to belong to a unique subclass and confirmed that it surpasses what was believed to be ...

Where do supernovae come from?

September 17, 2010

(PhysOrg.com) -- Supernovae, the explosive deaths of massive stars, are among the most momentous events in the cosmos because they disburse into space all of the chemical elements that were produced inside their progenitor ...

Recommended for you

Solar-powered rover approaching 5,000th Martian dawn

February 16, 2018

The sun will rise on NASA's solar-powered Mars rover Opportunity for the 5,000th time on Saturday, sending rays of energy to a golf-cart-size robotic field geologist that continues to provide revelations about the Red Planet.

Hubble sees Neptune's mysterious shrinking storm

February 15, 2018

Three billion miles away on the farthest known major planet in our solar system, an ominous, dark storm - once big enough to stretch across the Atlantic Ocean from Boston to Portugal - is shrinking out of existence as seen ...

Kepler scientists discover almost 100 new exoplanets

February 15, 2018

Based on data from NASA's K2 mission, an international team of scientists has confirmed nearly 100 new exoplanets. This brings the total number of new exoplanets found with the K2 mission up to almost 300.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

omatumr
1 / 5 (3) Apr 26, 2011
May I suggest that NSF use supercomputers to create "spectacular 3-D images" of the Cradle of the Nuclides:

www.omatumr.com/D...Data.htm

Those were used to discover the energy source that causes supernova explosions [1-3].

1. "Attraction and repulsion of nucleons: Sources of stellar energy", Journal of Fusion Energy 19, 93-98 (2001).

2. "Neutron repulsion confirmed as energy source",
Journal of Fusion Energy 20, 197-201 (2003).
http://www.spring...6685079/

3. "Neutron Repulsion", The APEIRON Journal, in press, 19 pages (2011);
http://arxiv.org/...2.1499v1

With kind regards,
Oliver K. Manuel

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.