New software to support interest in extreme science

April 29, 2011 By Steve Koppes
This artist's conception depicts a fusion experiment at the National Ignition Facility at Lawrence Livermore National Laboratory showing the target chamber and various diagnostic probes. The facility and its target chamber will be used for high-energy density physics experiments of the kind that UChicago's FLASH code now can simulate. Credit: Lawrence Livermore National Laboratory

(PhysOrg.com) -- Today the University of Chicago's Flash Center for Computational Science will release a major new version of supercomputer code, called FLASH 4-alpha. Based on previous software for simulating exploding stars, this is the first version of the FLASH code that has extensive capabilities for simulating high-energy density physics experiments.

The U.S. Department of Energy's National Nuclear Security Administration Advanced Simulation and Computing Program has funded the addition of the new capabilities to this software, which will help scientists at universities across the nation better understand the fundamental properties of matter at high densities and .

"The enhanced FLASH code is an open toolset for designing and analyzing experiments that address questions about the nature of planetary interiors, the creation of elements via nuclear processes, and how matter behaves in violent shocks and other ," said Don Lamb, Flash Center director and the Robert A. Millikan Distinguished Service Professor in Astronomy & Astrophysics at UChicago.

The code will support academic HEDP research at a variety of laboratories, including major national facilities such as the National Ignition Facility at Lawrence Livermore National Laboratory in California, the Z machine at Sandia National Laboratories in New Mexico and the Omega Laser Facility at the University of Rochester.

"These facilities use extremely powerful lasers or large amounts of electric current to generate conditions that allow scientists to investigate and address important issues in areas such as astrophysics, material science, planetary science and fusion energy," said Milad Fatenejad, a Flash Center research scientist. "Simulations play a vital role in demonstrating the viability of proposed experiments and analyzing experimental results. The enhanced FLASH code will be able to fill both of these roles."

The Flash Center is already using the new capabilities in FLASH to simulate radiative shock experiments conducted by the Center for Radiative Shock Hydrodynamics at the University of Michigan and at the Omega Laser Facility, said Fatenejad.

LLNL and other laboratories have developed highly capable codes for in-house research in HEDP, Lamb said. "Unlike FLASH, these codes were never designed with the academic community in mind," he said. "Having a workhorse open toolset for scientists at universities is absolutely essential, and until now has not existed."

The addition of new HEDP capabilities in the FLASH code has benefited from a collaboration the Flash Center has initiated with scientists at the universities of Michigan and Wisconsin, and at Los Alamos National Laboratory and Lawrence Livermore National Laboratory.

"We are very excited about the science these new capabilities will make possible," said Flash Center associate director Anshu Dubey. "The Center has been able to add HEDP capabilities to the FLASH code and make it run efficiently on the next generation of computers thanks to a decade of funding by the DOE NNSA ASC

Academic Strategic Alliance Program and recent funding by the DOE Office of Advanced Scientific Computing Research, as well as access to the world's fastest computers through the NNSA ASC Program and the Office of Science INCITE Program."

The new software is a collaboration between the Center, the University's Computation Institute and Argonne National Laboratory. DOE funding for the initiative is through the Argonne Institute for Computing in Science.

More than 700 scientists worldwide have used FLASH code, and they have published more than 400 papers reporting results based on its use. Although most of these scientists have used FLASH for astrophysical research, others have modified it for simulating atmospheric physics and biological processes. IBM, NVIDIA and other companies have also licensed FLASH to test and develop hardware and software.

Explore further: Argonne supercomputer to simulate extreme physics of exploding stars

Related Stories

Intel First With 65nm NOR Flash Memory Chips

April 4, 2006

Intel Corporation is the first to sample NOR multi-level cell flash memory chips at 1-gigabit density using its advanced 65-nanometer (nm) process technology. Intel’s NOR Flash memory chips are used in devices such as cell ...

World's largest laser completed

April 1, 2009

(PhysOrg.com) -- The Department of Energy today announced that the National Nuclear Security Administration (NNSA) has certified the completion of the historic effort to build the world's largest laser.

Recommended for you

Google, EU dig in for long war

July 20, 2017

Google and the EU are gearing up for a battle that could last years, with the Silicon Valley behemoth facing a relentless challenge to its ambition to expand beyond search results.

Strengthening 3-D printed parts for real-world use

July 20, 2017

From aerospace and defense to digital dentistry and medical devices, 3-D printed parts are used in a variety of industries. Currently, 3-D printed parts are very fragile and only used in the prototyping phase of materials ...

Swimming robot probes Fukushima reactor to find melted fuel

July 19, 2017

An underwater robot entered a badly damaged reactor at Japan's crippled Fukushima nuclear plant Wednesday, capturing images of the harsh impact of its meltdown, including key structures that were torn and knocked out of place.

Microsoft cloud to help Baidu self-driving car effort

July 19, 2017

Microsoft's cloud computing platform will be used outside China for collaboration by members of a self-driving car alliance formed by Chinese internet search giant Baidu, the companies announced on Tuesday.

Making lab equipment on the cheap

July 18, 2017

Laboratory equipment is one of the largest cost factors in neuroscience. However, many experiments can be performed with good results using self-assembled setups involving 3-D printed components and self-programmed electronics. ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

frajo
not rated yet Apr 30, 2011
The article seems to address business and politics only.
Not a single word about the really interesting things: software (which language?) and hardware.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.