Oyster shells are a scientific treasure trove

April 18, 2011
Oyster with lemon: This size comparison shows a cross section of growth line patterns of a Miocene oyster from the Vienna region, Austria. Credit: Mathias Harzhauser

The breakdown of the seasonality pattern marked a period of dramatic climate change 16–12 million years ago. This is the finding of an analysis of fossil oyster shells from the area around Vienna. The growth in calcium carbonate, which these shells experience every year, means that they "store" information on climatic conditions in high temporal resolution. A project conducted by the Austrian Science Fund FWF has recently analysed this growth. The identified change in the annual seasonality pattern during that period is surprising, as scientists had only been aware of a major temperature decline to date.

Climate change is nothing new. Around 14 million years ago the global shifted once before. Understanding what happened back then can help interpret what’s going on with today’s climate. However, what exactly happened at that time? The lack of prehistoric climate records has led scientists to employ unusual methods to answer this question. Experts from Vienna’s Natural History Museum decided to take a particularly tough approach: .

Oysters in The Service of Science

Dr. Mathias Harzhauser, who conducted the project in conjunction with colleagues from the University of Graz, Austria and the Senckenberg Institute in Germany, explains: "The shells of oysters are continually growing. Their growth is affected by environmental conditions, such as temperature and the salt content of the water. With an understanding of the way these aspects interact, conclusions can be drawn about the climate based on this growth. And if the oyster shells are fossilised, this also holds true for long-gone eras."

That is exactly what the team did using findings extracted from fossil giant oysters from the area around Vienna. In the process, they came upon with something very surprising for the period of climate change that occurred in the Miocene epoch, about 14 million years ago: not only did the average temperature fall 3 degrees Celsius, but there was also a breakdown of the pattern that was typical at the time. Dr. Harzhauser has little difficulty explaining why this fact has gone unnoticed until now: "Prior to these findings, much of the prehistoric climate data was obtained from geological drill cores. These enable the differentiation between lengthy periods, but a temporal resolution showing month-by-month changes, as the growth rate of the oyster shells offers, cannot be achieved by this method. So the two methods complement each other perfectly."


The scientists analysed in detail the proportion of the oxygen isotope 18O to isotope 16O and the carbon isotope 12C to isotope 13C in the calcium carbonate of the oyster shells. These values reflect the isotope proportions present in the seawater of that era, which, in turn, depend on the temperature and salt content. The method is so precise that temperature variations of less than 1 degree Celsius can be measured. The team therefore succeeded in demonstrating that the seasonal temperature variations in the period under examination declined from 9 degrees Celsius to 5–8 degrees Celsius.

For their analysis work, the team had five giant oysters of the species Crassostrea gryphoides at their disposal. These oysters tended to live in areas where fairly large rivers joined the sea and where there was a particular abundance of nutrients, creating ideal living conditions for the oysters. Some of the oysters from the Miocene epoch lived for more than 30 years, during which time their shell grew to more than 80 cm in length. Unlike the shells of other molluscs, oyster shells consist of calcite, not aragonite. The two forms of calcium carbonate differ in that calcite is less reactive and undergoes fewer chemical changes over millions of years than aragonite. It therefore provides a perfect archive for the storage of climate data.

In Vienna in particular, palaeontologists are sitting on a treasure trove – a fossil oyster reef situated near Vienna (the Korneuburg Basin) is the world’s largest, containing more than 15,000 oysters. And although the biggest fossilised pearl has already been found there – Dr. Harzhauser believes that the genuine treasure can be found there with the help of basic research: an understanding of our climate, then and now.

Explore further: Could oysters be used to clean up Chesapeake Bay?

More information: M. Harzhauser, et al: Changing seasonality patterns in Central Europe from Miocene Climate Optimum to Miocene Climate Transition deduced from the Crassostrea isotope archive. Global and Planetary Change, doi:10.1016/j.gloplacha.2010.12.003

Related Stories

Could oysters be used to clean up Chesapeake Bay?

January 21, 2011

Chronic water quality problems caused by agricultural and urban runoff, municipal wastewater, and atmospheric deposition from the burning of fossil fuels leads to oxygen depletion, loss of biodiversity, and harmful algal ...

High levels of carbon dioxide threaten oyster survival

August 5, 2010

It has been widely reported that the build up of carbon dioxide (CO2) in the air, which is caused by human behavior, will likely lead to climate change and have major implications for life on earth. But less focus has been ...

Oyster Shells Tell Story

June 4, 2010

(PhysOrg.com) -- Some oysters provide pearls but all oyster shells have a story to tell, if you know how to look for them. One compelling story about North America’s first successful English settlement has unfolded before ...

Shellfish face an uncertain future in a high CO2 world

May 27, 2009

Overfishing and disease have decimated shellfish populations in many of the world's temperate estuarine and coastal ecosystems. Smithsonian scientists, led by Whitman Miller, ecologist at the Smithsonian Environmental Research ...

The Pacific oyster is in Sweden to stay

March 22, 2011

The Pacific oyster was discovered in large numbers along the west coast of Sweden in 2007. The mortality rate in some places during the past two winters has been 100%, but researchers at the University of Gothenburg who have ...

Recommended for you

Fatty bird gland preserved over 48 million years

October 18, 2017

(Phys.org)—A team of researchers from the U.S., Ireland, Germany and the U.K. has found evidence of preservation of a fatty oil gland from a 48-million-year-old fossilized bird. In their paper published in Proceedings of ...

Waiting periods reduce deaths from guns, study suggests

October 17, 2017

(Phys.org)—A trio of researchers with Harvard Business School has found evidence that they claim shows gun deaths decline when states enact waiting period laws. In their paper published in Proceedings of the National Academy ...

Roman theater uncovered at base of Jerusalem's Western Wall

October 16, 2017

Israeli archaeologists on Monday announced the discovery of the first known Roman-era theater in Jerusalem's Old City, a unique structure around 1,800 years old that abuts the Western Wall and may have been built during Roman ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.