Data storage takes an electric turn

March 29, 2011
Domains in a ferroelectric memory: The image from the aberration-corrected transmission electron microscope shows the positions of both the positively charged titanium and zirconium atoms and the negatively charged oxygen in a cross-section sample of the ferroelectric PZT. The extent to which the zirconium and titanium atoms have been displaced in the depolarised PZT (yellow arrows in the image on the right) indicates the orientation of the dipole moments. The yellow dotted line marks the boundary between the two domains with a polarisation which has rotated 180 degrees. The domain demarcated by the blue dotted line was observed for the first time. It represents a dipole flux closure. The red dashed line shows where the strontium ruthenate layer begins. © C.-L. Jia/FZ Jülich

( -- German scientists from the Forschungszentrum Julich and the Max Planck Institute of Microstructure Physics in Halle have discovered the basis for the next generation of memory devices. In a ferroelectric material, they have, for the first time, been able to observe directly how dipoles, which store the information in this material, continuously rotate and therefore may be organised in circular structures. The report was published in the journal Science. The findings were obtained using a type of high-resolution transmission electron microscopy with especially sharp contrast, developed by the Julich scientists. Arranging the dipoles in a circular structure could allow for significantly denser data storage than previously possible, while still ensuring fast writing and reading processes.

Ferroelectrics could be the way out of a dilemma troubling the chip industry. They provide durable storage and yet can be written and read quickly. Magnetic materials, on the other hand, which are used to produce hard disks and which provide permanent data storage, are sluggish. Semiconductors, for their part, are efficient in handling data, but quick to forget - which means that the electrical charges of their capacitors require constant renewal. Ferroelectrics combine the benefits of both materials. In addition, it may be possible to achieve greater data density in them than previously assumed. They could therefore soon become the material of choice for working memories with a density of several terabits per square inch.

Ferroelectric materials store bits in which their unit cells, their smallest structural units, are polarised. In other words, an electric field displaces the positively and negatively charged atoms slightly in relation to each other, so that the unit cells are somewhat distorted and a dipole is created. The dipole is maintained until a field of inverse polarisation switches the dipole or causes depolarisation. Each bit is assigned to an area – a so-called domain in physics – of the ferroelectric memory, where all the dipoles have the same orientation. “We have now discovered that under certain conditions the polarisation is maintained even in very small domains”, says Chun-Lin Jia, a scientist at the Forschungszentrum Julich.

The results were obtained through the use of a ferroelectric material produced at the Max Planck Institute of Microstructure Physics in Halle. The material, which goes by the designation of lead zirconate titanate (PZT), contains lead, zirconium, titanium and oxygen. Chun-Lin Jia and Knut Urban, Director of the Ernst Ruska Center for Microscopy and Spectroscopy with Electrons (based in Aachen and Jülich) have studied the sample of PZT using a particularly sensitive atomic-resolution transmission electron microscope. This aberration-corrected device delivers particularly sharp and contrast-rich images of very small details. It can even measure the positions of atoms with a precision of a few picometres (one picometre is a 10-12 metres). In contrast to conventional transmission electron microscopes, this method permits the localisation of the oxygen atoms in the PZT, where they are otherwise almost impossible to detect due to their weak scattering yield.

By determining the exact positions in the PZT sample of the oxygen atoms on the one hand, and the zirconium and titanium atoms on the other hand, the scientists identified the dipole orientation in each and every one of more than 250 unit cells. The sample consists of a cross-section of a PZT layer, which is approximately twenty unit cells thick, i.e. a good forty atomic layers. The ferroelectric material was deposited very accurately on a monocrystalline strontium titanate substrate by Ionela Vrejoiu from the Max Planck Institute of Microstructure Physics. This was additionally equipped with a thin marker layer of ruthenium oxide, in order to better distinguish the interface between the ferroelectric film and the substrate. Even the boundaries between two domains with inverse polarisation could be detected accurately in the transmission electron microscopic image of the sample cross-section.

There, where the domain boundary meets the ruthenium oxide marker layer, the scientists from Jülich observed something unexpected: an additional domain measuring only a few square nanometres, in which the orientation of the dipole system continuously rotates 180 degrees; the scientists call this a flux-closure domain. “Such domains are known from magnetic materials and had been predicted in theory for ”, says Knut Urban. “However, we are the first to have observed them directly”.

This chamber is used by scientists at the Max Planck Institute for Microstructure Physics to produce the ferroelectric material PZT using pulsed laser deposition (PLD). The method permits extremely accurate control of the material formation. © MPI of Microstructure Physics

“I didn’t think that they existed”, confesses Marin Alexe, who researches ferroelectrics at the Max Planck Institute in Halle. For good reason: magnetisation is caused by electrons and can be reoriented using a small amount of energy. To reorient dipoles in ferroelectrics, however, a distortion or a rearrangement of the unit cells is required. Such changes cost much more energy than a magnetic reorientation, since they disturb the symmetry of the crystal. A 180 degree rotation is still conceivable, but many scientists considered a gradual distortion of the unit cells simply too energy-consuming.

Circular dipole structures allow for dense data storage

“That we have been able to demonstrate the dipole flux closure and the continuous rotation of the dipoles should be of practical use”, says Dietrich Hesse, one of the participating scientists at the Max Planck Institute in Halle. “Apparently, nature has found a way to maintain polarisation even in structures as small as ten by ten nanometres.” Previously, physicists assumed that the polarisation in such structures would collapse, as they contain too few dipoles.

Ferroelectricity is a collective phenomenon, where the dipoles support each other to a certain extent. If their number falls below a certain limit, small electric charges, which are constantly occurring on the surfaces, will break up the order of the dipoles. This effect is also what caused the polarisation on the upper side of the PZT film to disappear, which the team of scientists studied. “Until now, we therefore had to assume that domains could not be reduced to less than 20 by 20 nanometres, due to depolarisation”, explains Marin Alexe. However, it would now seem that it is possible.

“We will now examine the exact conditions under which the structures with circular polarisation form”, says Alexe. The zero and one of a bit can be coded by orienting the dipoles clockwise and anticlockwise, alternatively. “We already have ideas for new research along those lines”, says Dietrich Hesse. “However, it will be a few years before we see data storage that can store several billion data points per square inch and that can write and read them as quickly as the currently available .”

Explore further: Small and stable ferroelectric domains

More information: Chun-Lin Jia, Knut W. Urban, Marin Alexe, Dietrich Hesse, Ionela Vrejoiu, Direct Observation of Continuous Electric Dipole Rotation in Flux-Closure Domains in Ferroelectric Pb(Zr,Ti)O3, Science, 18 March 2011; DOI: 10.1126/science.1200605

Related Stories

Small and stable ferroelectric domains

March 28, 2011

Researchers are one step closer to figuring out a way to make nano-sized ferroelectric domains more stable, reports a new study in journal Science.

World record data density for ferroelectric recording

August 17, 2010

Scientists at Tohoku University in Japan have recorded data at a density of 4 trillion bits per square inch, which is a world record for the experimental "ferroelectric" data storage method. As described the journal Applied ...

Lead-free technology on its way

November 2, 2010

The change-over to lead-free products is in full progress. The problem is however that the environmentally friendly alternatives have to be as effi cient as the lead-containing variants. One example is the injection system ...

Tunneling Across a Ferroelectric

July 14, 2006

University of Nebraska-Lincoln physicist Evgeny Tsymbal's groundbreaking identification of an emerging research field in electronic devices earned publication this week in Science magazine.

Recommended for you

Quantum internet goes hybrid

November 22, 2017

In a recent study published in Nature, ICFO researchers led by ICREA Prof. Hugues de Riedmatten report an elementary "hybrid" quantum network link and demonstrate photonic quantum communication between two distinct quantum ...

Enhancing the quantum sensing capabilities of diamond

November 22, 2017

Researchers have discovered that dense ensembles of quantum spins can be created in diamond with high resolution using an electron microscopes, paving the way for enhanced sensors and resources for quantum technologies.

Study shows how to get sprayed metal coatings to stick

November 21, 2017

When bonding two pieces of metal, either the metals must melt a bit where they meet or some molten metal must be introduced between the pieces. A solid bond then forms when the metal solidifies again. But researchers at MIT ...

Imaging technique unlocks the secrets of 17th century artists

November 21, 2017

The secrets of 17th century artists can now be revealed, thanks to 21st century signal processing. Using modern high-speed scanners and the advanced signal processing techniques, researchers at the Georgia Institute of Technology ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Mar 30, 2011
It would seem that no matter how small the structure for the bits in a physical system the interface will remain a limiting factor.

I didn't notice a reported frequency for the 180 degree dipole rotation.
not rated yet Apr 02, 2011
It would seem that no matter how small the structure for the bits in a physical system the interface will remain a limiting factor.

Well of course.

As we progress to more and more advanced systems, I think engineers will find places to "stow" more and more processors and memory devices. Just think, the "empty" space under a key on your keyboard could one day contain a chip capable of storing a terrabit of data...

Anyway, you are certainly right. Most of the mass of a computer or even a smart phone is interface (display, buttons, speaker, etc,) and the case to protect the computer from the environment.

There's a practical limit to everything.

For example:

There's even a limit to how much your life style would be improved by an ideal automobile with 100% efficiency, and it's actually not that much more than what we have now... Even if owning and operating an automobile were FREE it would only improve most people's quality of life by about 55% compared to today.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.