Stars gather in 'downtown' Milky Way

Stars gather in 'downtown' Milky Way
The region around the center of our Milky Way galaxy glows colorfully in this new version of an image taken by NASA's Spitzer Space Telescope. Credit: NASA/JPL-Caltech

(PhysOrg.com) -- The region around the center of our Milky Way galaxy glows colorfully in this new version of an image taken by NASA's Spitzer Space Telescope.

The data were previously released as part of a long, 120-degree view of the plane our galaxy. Now, data from the very center of that picture are being presented at a different contrast to better highlight this jam-packed region. In visible-light pictures, it is all but impossible to see the heart of our galaxy, but penetrates the shroud of dust giving us this unprecedented view.

In this Spitzer image, the myriad of stars crowding the center of our galaxy creates the blue haze that brightens towards the center of the image. The green features are from carbon-rich dust molecules, called polycyclic aromatic hydrocarbons, which are illuminated by the surrounding starlight as they swirl around the galaxy's core. The yellow-red patches are the thermal glow from warm dust. The and dust are associated with bustling hubs of . These materials, mixed with gas, are required for making new stars.

The brightest white feature at the center of the image is the central star cluster in our galaxy. At a distance of 26,000 light years away from Earth, it is so distant that, to Spitzer's view, most of the light from the thousands of individual stars is blurred into a single glowing blotch. Astronomers have determined that these stars are orbiting a massive black hole that lies at the very center of the galaxy.

The region pictured here is immense, with a horizontal span of 2,400 light-years (5.3 degrees) and a vertical span of 1,360 light-years (3 degrees). Though most of the objects seen in this image are located near the galactic center, the features above and below the galactic plane tend to lie closer to Earth.

The image is a three-color composite, showing infrared observations from two of Spitzer instruments. Blue represents 3.6-micron light and green shows 8-micron light, both captured by Spitzer's infrared array camera. Red is 24-micron light detected by Spitzer's multiband imaging photometer. The data is a combination of observations from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) project, and the Multiband Imaging Photometer for Spitzer Galactic survey (MIPSGAL).


Explore further

Spitzer captures infrared rays from a sunflower

Provided by JPL/NASA
Citation: Stars gather in 'downtown' Milky Way (2011, March 21) retrieved 26 August 2019 from https://phys.org/news/2011-03-stars-downtown-milky.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments

Mar 22, 2011
Fragmentation of the compact object at the galactic center produced "the myriad of stars crowding the center of our galaxy."

Neutron repulsion is the driving force that powers this ["Neutron Repulsion," The APEIRON Journal, in press (2011), 19 pages].

http://arxiv.org/...2.1499v1

With kind regards,
Oliver K. Manuel
Former NASA Principal
Investigator for Apollo

Mar 22, 2011
In the book, Caldrons in the Cosmos, Noble Laureate William Fowler noted:

Indeed there are details to be attended to, but they are overshadowed by serious difficulties in the most basic concepts of nuclear astrophysics. On square one, the solar neutrino puzzle is still with us . . . indicating that we do not even understand how our own star really works. On square two we still cannot show in the laboratory and in theoretical calculations why the ratio of oxygen to carbon in the sun and similar stars is close to two-to-one . . . We humans are mostly (90%) oxygen and carbon. We understand in a general way the chemistry and biology involved, but we certainly do not understand the nuclear astrophysics which produced the oxygen and carbon in our bodies.

The above paper addresses those issues.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more