Electrifying new way to clean dirty water

January 6, 2011

(PhysOrg.com) -- University of Utah researchers developed a new concept in water treatment: an electrobiochemical reactor in which a low electrical voltage is applied to microbes to help them quickly and efficiently remove pollutants from mining, industrial and agricultural wastewater.

The patented electrobiochemical reactor (EBR) process replaces tons of chemicals with a small amount of electricity that feed microbes with electrons. Tests have shown that the electrons accelerate how quickly the microbes remove pollutants such as arsenic, selenium, mercury and other materials, significantly reducing the cost of wastewater cleanup.

The research is now being used by a University of Utah startup company named INOTEC, which was honored at the 2010 Cleantech Open competition in San Jose, Calif. INOTEC and its EBR technology won the $40,000 Rocky Mountain regional award in what is nicknamed the "Academy Awards of ." INOTECH was one of 18 teams that became finalists out of 271 in the event.

Metallurgical engineer Jack Adams of the College of Mines and Earth Sciences pioneered the process. He and graduate student Mike Peoples, who co-founded INOTEC, say the award is validation that their research can save the wastewater industry money.

"It is great to be recognized for an innovative clean technology," says Adams, president of INOTEC and a research professor in the Department of Metallurgical Engineering. "We're currently in the early stages of growing the company, and every bit of recognition and support we get fits in with our go-to-market model. It will open new opportunities for securing partnerships and investor funding that will allow us and a partner to take the technology further faster."

Adams says the new method can enhance just about any type of wastewater treatment. It now is being tested primarily for removing metals from mining wastewater, but also could be used for other industrial and agricultural wastes, he adds.

INOTEC has received support and an exclusive license to the EBR technology from the University of Utah's Technology Commercialization Office, which protects and manages the university's intellectual property and helps faculty members create startup companies. INOTEC is working with the office's new Energy Commercialization Center to secure business partners and funding.

In conventional , microbes or chemicals alter or remove contaminants by adding or removing electrons. The electrons come from large excesses of nutrients and chemicals added to the systems to adjust the reactor chemistry for microbial growth and contaminant removal. Those large excesses must be added to compensate for changes in water chemistry and other factors that limit the availability of electrons to remove pollutants.

The electrobiochemical reactor or EBR system overcomes these shortcomings by directly supplying excess electrons to the reactor and microbes using low voltage and no current, unlike other systems that provide large electrical currents. One volt supplies about one trillion trillion electrons (note: trillion twice is correct). These electrons replace the electrons normally supplied by excess nutrients and chemicals, at a considerable savings and with greater efficiency.

The electrons needed for a full-scale facility can easily be supplied by a small solar power grid. "The provided make reactors more efficient, stable and controllable," Adams says.

The researchers, through INOTEC, have successfully completed five laboratory tests of waters from various metal and coal mines in North America containing selenium, arsenic, mercury and nitrates.

INOTEC recently completed its first on-site, pilot-scale contract, treating wastewater containing arsenic and nitrate from an inactive gold mine. This demonstration was partially funded through a University of Utah Virtual Incubator Program grant.

INOTEC has also secured its own contract for a second pilot-scale test at a mine for silver and other metals in the Yukon in spring 2011.

Explore further: Wastewater: Energy of the future?

More information: More information about INOTEC can be found at www.inotec.us

Related Stories

Wastewater: Energy of the future?

November 14, 2005

Professor Jurg Keller at Australia's University of Queensland said he and his colleagues have discovered how to turn wastewater into electricity.

University of Utah microbubbles clean dirty soil in China

October 13, 2010

Microbubbles are much bigger than they sound. If all goes as planned during a demonstration project in eastern China, microbubble technology developed at the University of Utah has the potential to boost a wide range of environmental ...

What's in our water?

November 5, 2009

(PhysOrg.com) -- Although America's supply of drinking water is considered among the world's safest, there is an urgent need to develop more stringent regulations to guide how water is monitored for pollutants, according ...

Renewable hydrogen production becomes reality at winery

September 29, 2009

(PhysOrg.com) -- The first demonstration of a renewable method for hydrogen production from wastewater using a microbial electrolysis system is underway at the Napa Wine Company in Oakville. The refrigerator-sized hydrogen ...

Recommended for you

Google, EU dig in for long war

July 20, 2017

Google and the EU are gearing up for a battle that could last years, with the Silicon Valley behemoth facing a relentless challenge to its ambition to expand beyond search results.

Strengthening 3-D printed parts for real-world use

July 20, 2017

From aerospace and defense to digital dentistry and medical devices, 3-D printed parts are used in a variety of industries. Currently, 3-D printed parts are very fragile and only used in the prototyping phase of materials ...

Swimming robot probes Fukushima reactor to find melted fuel

July 19, 2017

An underwater robot entered a badly damaged reactor at Japan's crippled Fukushima nuclear plant Wednesday, capturing images of the harsh impact of its meltdown, including key structures that were torn and knocked out of place.

Microsoft cloud to help Baidu self-driving car effort

July 19, 2017

Microsoft's cloud computing platform will be used outside China for collaboration by members of a self-driving car alliance formed by Chinese internet search giant Baidu, the companies announced on Tuesday.

Making lab equipment on the cheap

July 18, 2017

Laboratory equipment is one of the largest cost factors in neuroscience. However, many experiments can be performed with good results using self-assembled setups involving 3-D printed components and self-programmed electronics. ...


Adjust slider to filter visible comments by rank

Display comments: newest first

4.5 / 5 (2) Jan 06, 2011
It is one small step from extracting metals and metal salts from wastewater streams to concentrating and extract the metals from more concentrated streams in useful quantities. Could this imply a future mining technique?
not rated yet Jan 29, 2011
How is the metal removed again? All I saw was a microbial reaction that is fed by outside electrons. What kind of reactions. What is produced, how is it removed cheaper? Sounds like your just adding energy to a process, and it speeds up the process. Like stiring faster, for example. I guess this would be a more efficient use of energy than more stiring for example.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.