Going nature one better: Researchers learn biology's secrets for making tough, resilient materials

October 22, 2010 By David L. Chandler
An image of a species of diatom, Cymbela cistula. Marcus Buehler says diatoms are a good example of the way weak building blocks — in this case, fragile and brittle silica — can be used in biology to build strong and durable materials, by assembling them in structures organized differently at different scales. Image: NSF

Nature has one very big advantage over any human research team: plenty of time. Billions of years, in fact. And over all that time, it has produced some truly amazing materials — using weak building blocks that human engineers have not yet figured out how to use for high-tech applications, and with many properties that humans have yet to find ways to duplicate.

But now a number of researchers such as MIT professor Markus Buehler have begun to unravel these processes at a deep level, not just finding out how the behave but what the essential structural and chemical characteristics are that give them their unique properties. In the future, they hope to mimic those structures in ways that produce even better results.

It all comes down to assembling complex structures from small, simple building blocks, Buehler explains. He likes to use a musical analogy: A symphony comprises many different instruments, each of which on its own could never produce something as grand and complex as the combined rich, full musical experience. In a similar way, he hopes to construct complex materials with previously unavailable properties by using simple building blocks assembled in ways that borrow from those used by nature.

Human engineers, he explains, do have at least one important advantage over nature: They can choose their materials. Nature, by contrast, often has to make do with whatever is readily available locally, and whatever structures have been created through the lengthy trial-and-error of evolution. “A spider or a cell,” Buehler says, “doesn’t have great resources. It can’t import materials, it uses what’s available.”

In biological materials such as spider silk, the geometry of the structures makes all the difference. Silk, a subject of earlier studies by Buehler and his colleagues, is made up of molecules that are, in themselves, inherently weak, but the basic disk-shaped molecules are combined into small stacks, which are in turn combined into cross-linked fibers in a way that makes the whole far stronger than its component parts. Engineers could learn a thing or two from such structures, Buehler suggests, with their different arrangements at different scales. “If we figure out how to design things at multiple scales, we don’t need fancy building blocks,” he says.

Peter Fratzl, a materials scientist at the Max Planck Institute of Colloids and Interfaces in Germany, sees great promise in this approach. “It is not so much the chemical composition that really counts, but the way the components (which may be intrinsically poor) are joined together,” he says. “Unraveling these structural principles requires experimental as well as theoretical approaches covering many length scales, from the size of molecules to complete organs.” So far, the research has been mostly on the theoretical side, but Buehler and others are hoping to proceed with experimental work as well.

This design approach not only holds the promise of creating materials with great qualities of strength, or stretchiness, or with useful optical or electrical properties, but also for making use of materials that are now thought to be of little use, or even waste products.

Hierarchical structures

The key to making strong materials out of weak components, Buehler has found, lies in the way small pieces are arranged into larger patterns in different ways at different scales — in other words, in a hierarchical set of structures. “This paradigm, the formation of distinct structure at multiple length scales, enables biological materials to overcome the intrinsic weaknesses of the ,” he wrote in a paper appearing this month in the journal Nano Today.

Most of the structural materials designed by people, on the other hand — steel, bricks, mortar — have simple structures that do not vary with scale, although some composite materials and structures built from components such as carbon nanotubes are beginning to implement at least some differentiation of with scale. But Buehler sees this as an area that is ripe for much more sophisticated and complex new designs.

Buehler suggests that just as biology has done, humans could engineer materials with desired properties such as strength or flexibility by using abundant and cheap materials such as silica, which in bulk form is brittle and weak. “The design of hierarchical structures could be the key to overcome their intrinsic weakness or brittleness, properties that currently prevent their widespread technological application,” he wrote in the Nano Today paper. Using cleverly designed structures, he suggests, humans should be able to produce materials with almost any kind of desired properties, even using a very limited, and “almost arbitrary” set of components.

“We’re trying to develop computer models,” he says, “so that we can make predictions” about the properties of materials built in ways that have never been made before. “As engineers, we have models for how to make a car, or a building,” he says. But for designing the basic structures of new materials, the technology today “is really at an infant stage.” But as such models are developed, he says confidently, “we can do much better than biology.”

This story is republished courtesy of MIT News (web.mit.edu/newsoffice/), a popular site that covers news about MIT research, innovation and teaching.

Explore further: Biology rides to computers' aid

Related Stories

Biology rides to computers' aid

October 19, 2010

Photonic crystals are exotic materials with the ability to guide light beams through confined spaces and could be vital components of low-power computer chips that use light instead of electricity. Cost-effective ways of ...

Simplicity is crucial to design optimization at nanoscale

February 4, 2009

MIT researchers who study the structure of protein-based materials with the aim of learning the key to their lightweight and robust strength have discovered that the particular arrangement of proteins that produces the sturdiest ...

Shedding light on treasured vaults

October 8, 2010

In 1881, a Spanish builder named Rafael Guastavino immigrated to the United States with no job, no family awaiting him and no grasp of English. He did possess one valuable piece of knowledge, however: Guastavino had learned ...

Recommended for you

Here's a tip: Indented cement shows unique properties

July 19, 2017

Rice University scientists have determined that no matter how large or small a piece of tobermorite is, it will respond to loading forces in precisely the same way. But poking it with a sharp point will change its strength.

Nanoparticles could spur better LEDs, invisibility cloaks

July 19, 2017

In an advance that could boost the efficiency of LED lighting by 50 percent and even pave the way for invisibility cloaking devices, a team of University of Michigan researchers has developed a new technique that peppers ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Oct 22, 2010
a design principle centered on using a small array of simple, readily available, materials, is one that would fit well into planning for a trip to mars or the moon , where we land and use readily available materials to produce fuels for the stay there and for powering the way back. this kind of high-tech lewis and clark approach wouldn't have any martians to help us figure out what the best way to utilize and find local resources are.
not rated yet Oct 23, 2010
The bleeding heart Mars spacers never give up do they !

We're talking about "inspired" building techniques here. Thinking about Mars after reading this article is nothing less than a flight of fancy.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.