Batteries smaller than a grain of salt

October 19, 2010

Lithium-ion batteries have become ubiquitous in today's consumer electronics -- powering our laptops, phones, and iPods. Research funded by DARPA is pushing the limits of this technology and trying to create some of the tiniest batteries on Earth, the largest of which would be no bigger than a grain of sand.

These tiny energy storage devices could one day be used to power the electronics and mechanical components of tiny micro- to nano-scale devices.

Jane Chang, an engineer at the University of California, Los Angeles, is designing one component of these batteries: the that allows charge to flow between electrodes. She presents her results today at the AVS 57th International Symposium & Exhibition, which takes place this week at the Albuquerque Convention Center in New Mexico.

"We're trying to achieve the same power densities, the same energy densities as traditional lithium ion batteries, but we need to make the footprint much smaller," says Chang.

To reach this goal, Chang is thinking in three dimensions in collaboration with Bruce Dunn other researchers at UCLA. She's coating well-ordered micro-pillars or nano-wires -- fabricated to maximize the surface-to-volume ratio, and thus the potential energy density -- with electrolyte, the conductive material that allows current to flow in a battery.

Using atomic layer deposition -- a slow but precise process that allows layers of material only an atom thick to be sprayed on a surface -- she has successfully applied the solid electrolyte aluminosilicate to these nanomaterials.

The research is still in its early stages: other components of these 3D microbatteries, such as the , have also been developed, but they have yet to be assembled and integrated to make a functioning battery.

Explore further: Tin-sulfur-lithium-ion battery as alternative to conventional lithium batteries

More information: The presentation, "Engineering LixAlySizO Thin Films as a Solid Electrolyte for 3D Microbatteries" is at 2:40 p.m. on Tuesday, October 19, 2010. ABSTRACT: www.avssymposium.org/Open/Sear … erNumber=EN+EM-TuA-3

Related Stories

New Hitachi Li-ion batteries to last ten years

April 9, 2010

(PhysOrg.com) -- Hitachi has announced they may be able to double the life of rechargeable lithium-ion (Li-ion) batteries through the development of a new cathode material. The material was developed in conjunction with the ...

Nanoball Batteries Could Charge Electric Cars in 5 Minutes

March 12, 2009

(PhysOrg.com) -- Researchers at MIT have designed a new battery that can recharge devices about 100 times faster than conventional lithium ion batteries. The design could lead to electric car batteries that charge in 5 minutes ...

Improved redox flow batteries for electric cars

October 13, 2009

A new type of redox flow battery presents a huge advantage for electric cars. If the rechargeable batteries are low, the discharged electrolyte fluid can simply be exchanged at the gas station for recharged fluid -- as easy ...

Recommended for you

Carefully crafted light pulses control neuron activity

November 17, 2017

Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

Strain-free epitaxy of germanium film on mica

November 17, 2017

Germanium, an elemental semiconductor, was the material of choice in the early history of electronic devices, before it was largely replaced by silicon. But due to its high charge carrier mobility—higher than silicon by ...

New imaging technique peers inside living cells

November 16, 2017

To undergo high-resolution imaging, cells often must be sliced and diced, dehydrated, painted with toxic stains, or embedded in resin. For cells, the result is certain death.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.