Glorious gadolinium gives flash memory a future

August 24, 2010

Future flash memory could be faster and store more data without changing its basic design by using a clever nanocrystal material proposed by scientists at Taiwan's Chang Gung University, who describe a new logical element made with the rare earth material gadolinium in the journal Applied Physics Letters.

It's well known in the that conventional -- an essential element of mobile electronics today -- cannot improve much more because continued shrinking of its floating gate structure in the pursuit of faster performance and higher data storage capacity will soon degrade its ability to retain its memory. The situation has stimulated a wide range of research worldwide into dozens of alternative memory designs, but most attractive to industry would be one that requires the least modification to the existing floating-gate design.

A research group headed by Chao-Sung Lai at Chang Gung University in Taoyuan, Taiwan, has done just that. They have demonstrated that a cleverly modified floating gate made of oxide -- an inexpensive rare-earth compound already used in other microelectronic applications -- has the write/erase speed and data retention properties that will enable smaller, faster and higher-capacity flash memories in the future.

"The low-voltage and low-power operation of this memory should make it especially attractive for future smartphones and other telecommunications applications," said Dr. Lai.

The Chang Gung researchers made two key insights that enabled their success. Last year, they realized that taken together, crystallized and amorphous gadolinium oxide had electrical properties that were close to those needed for future floating-gate flash memories. After creating gadolinium oxide within a matrix of its amorphous form, they then exposed it to a fluorine-containing plasma, which boosted the materials' properties to the desired level. Since all of the materials and processes they used are well-known in the semiconductor industry, Dr. Lai is optimistic that this design will ultimately be commercially successful.

Explore further: Organic flash memory developed

More information: The article, "Nano-Structure Band Engineering of Gadolinium Oxide Nanocrystal Memory by CF4 plasma Treatment" by Jer-Chyi Wang, Chih-Ting Lin, Chao Sung Lai and Jui-Lin Hsu will appear in the journal Applied Physics Letters. See: apl.aip.org/resource/1/applab/v97/i2/p023513_s1

Related Stories

Organic flash memory developed

December 17, 2009

(PhysOrg.com) -- Researchers at the University of Tokyo have developed a non-volatile memory that has the same basic structure as a flash memory but is made from cheap, flexible, organic materials.

World's first MOSFETs with epitaxial Gd2O3

February 3, 2006

Researchers at AMICA and Technical University of Darmstadt have successfully fabricated the world's first MOSFETs on ultra-thin-body silicon-on-insulator (SOI) material and bulk silicon with a crystalline gadolinium oxide ...

Recommended for you

Single-photon detector can count to four

December 15, 2017

Engineers have shown that a widely used method of detecting single photons can also count the presence of at least four photons at a time. The researchers say this discovery will unlock new capabilities in physics labs working ...

Complete design of a silicon quantum computer chip unveiled

December 15, 2017

Research teams all over the world are exploring different ways to design a working computing chip that can integrate quantum interactions. Now, UNSW engineers believe they have cracked the problem, reimagining the silicon ...

A shoe-box-sized chemical detector

December 15, 2017

A chemical sensor prototype developed at the University of Michigan will be able to detect "single-fingerprint quantities" of substances from a distance of more than 100 feet away, and its developers are working to shrink ...

Real-time observation of collective quantum modes

December 15, 2017

A cylindrical rod is rotationally symmetric - after any arbitrary rotation around its axis it always looks the same. If an increasingly large force is applied to it in the longitudinal direction, however, it will eventually ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.