Scientist's Award Allows Her To Probe the Earth's Mantle

June 11, 2010

( -- Sandwiched between the liquid iron outer core and the thin rocky crust we live on, the Earth's mantle is more than 1,800 miles thick, and comprises more than three-quarters of the planet's volume and nearly two-thirds of its mass. Yet surprisingly, scientists don't know exactly what it's made of.

Now Kanani Lee, an assistant professor in the Department of Geology and Geophysics, has secured a CAREER Award — the National Science Foundation's most prestigious honor for junior faculty who excel at integrating research with education — to help her find out.

Lee studies the interior of the Earth by investigating the properties of different materials at extremely and pressures. Using a vise-like device that crushes samples between diamonds to more than one million times the ambient pressure at the surface of the Earth, she then heats the samples to thousands of degrees Kelvin using an , recreating the conditions found thousands of miles below the surface.

By subjecting different mineral compounds to these , Lee aims to learn more about which minerals are present in the deep mantle and might have resulted in the rock samples that are spewed up by volcanic eruptions.

"These rare, essentially unmelted rocks are the only examples we have from the mantle," Lee says, noting that the crust, which is 20 to 30 miles thick, is too deep for drilling.

Geologists have some guesses about what the Earth's mantle is made of. They know it involves a combination of magnesium, iron, silicon and oxygen — the most simple mixture of which is a compound that geologists call "pyrolite" — but the exact remains elusive.

Seismologists offer a piece of the puzzle, providing models of mantle density based on how quickly or slowly seismic waves, caused by earthquakes, travel through the rocky layer. But pyrolite isn't dense enough to match up exactly with those seismological models, which scientists believe to be accurate over long distances, Lee says, so there must be something else going on. For instance, there are other elements involved that have been mostly ignored in compositional models, Lee says, such as calcium, aluminum and sodium, which could change the density of the mantle mineral mixture. Or perhaps scientists are wrong about the temperatures they think exist in the deepest layers, she notes.

Whatever the missing piece, uncovering the composition of the Earth's mantle would tell scientists a lot about how our planet formed and evolved over time, and could even shed light on the formation of other planets in our solar system and beyond.

"This is a very fundamental question that we should know the answer to," Lee says. "The chemical makeup of the mantle is crucial for understanding the thermal evolution of the Earth — how it cooled and evolved after it formed about 4.5 billion years ago — as well as how the continents grew and how the oceans and the atmosphere were created."

In addition to the research, Lee also has plans for education and outreach — one of the requirements for CAREER Award grants. Inspired by her husband, a comic book illustrator, Lee hopes to produce a short comic book about earth science for middle school students in New Haven, which would also be available online for other teachers and the general public.

Explore further: Upside-down answer for deep Earth mystery: Clues point to 'density trap' in early mantle

Related Stories

The Earth's hidden weakness

May 28, 2010

( -- Three thousand kilometres beneath our feet, the Earth's solid rock gives way to the swirling liquid iron of the outer core.

An Inexhaustible Source of Energy from Methane in Deep Earth

September 15, 2004

Untapped reserves of methane, the main component in natural gas, may be found deep in Earth’s crust, according to a recently released report in the Proceedings of the National Academy of Sciences of the United States of ...

Probing Question: What heats the earth's core?

March 30, 2006

Although we crust-dwellers walk on nice cool ground, underneath our feet the Earth is a pretty hot place. Enough heat emanates from the planet's interior to make 200 cups of piping hot coffee per hour for each of Earth's ...

Recommended for you

Scientists capture Earth's 'hum' on ocean floor

December 7, 2017

Scientists have long known earthquakes can cause the Earth to vibrate for extended periods of time. However, in 1998 a research team found the Earth also constantly generates a low-frequency vibrational signal in the absence ...

Birth of a storm in the Arabian Sea validates climate model

December 6, 2017

Researchers from Princeton University and the National Oceanic and Atmospheric Administration (NOAA) report in the journal Nature Climate Change that extreme cyclones that formed in the Arabian Sea for the first time in 2014 ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.