System that controls sleep may be same for most mammals

In a novel mathematical model that reproduces sleep patterns for multiple species, an international team of researchers has demonstrated that the neural circuitry that controls the sleep/wake cycle in humans may also control the sleep patterns of 17 different mammalian species.

These findings, reported by researchers from Brigham and Women's Hospital (BWH), the University of Sydney, and the Center for Integrated Research and Understanding of Sleep (Camperdown, Australia), suggest that fundamental are at work across diverse species, even though vary drastically. This research published June 24th in the open-access journal .

"These findings show that although mammalian sleep is remarkably diverse in expression, from dolphins who sleep with one brain half at a time to rodents who have many short naps, it is very likely universal in origin, which suggests that this simple system is both highly flexible and evolutionarily conserved," said Andrew Phillips, lead author of the paper and researcher in the Division of Sleep Medicine at BWH.

Over the past decade, researchers have reported findings related to the structures in the brain that are critical to sleep regulation, but these findings have been limited to a small number of species. Until now, it was unclear to what extent these physiological mechanisms are universal across all mammals, especially given such large interspecies differences in sleep patterns.

Using their model, the authors also provide insight into why the sleep patterns of different species are so distinct. For example, the model explains how some mammals (such as dolphins and ) sleep with one half of their brain at a time while the other half remains active; if the sleep centers on either side of the brain inhibit one another then only one is able to activate at a time, preventing the animal from sleeping with both brain halves at once. This testable prediction awaits physiological investigation.

The authors stress that this research was performed using a of the physiology to simulate the sleep patterns of different mammals. Further research is thus required to test these predictions directly, and to determine whether the same physiological mechanisms are at work in nocturnal species.


Explore further

4 days of REM sleep deprivation contributes to a reduction of cell proliferation in rats

More information: Phillips AJK, Robinson PA, Kedziora DJ, Abeysuriya RG (2010) Mammalian Sleep Dynamics: How Diverse Features Arise from a Common Physiological Framework. PLoS Comput Biol 6(6): e1000826. doi:10.1371/journal.pcbi.1000826
Citation: System that controls sleep may be same for most mammals (2010, June 24) retrieved 15 December 2019 from https://phys.org/news/2010-06-mammals.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments