Nanocapsule delivers radiotherapy

Nanocapsule delivers radiotherapy
Image: Nanocapsules by Gerard Tobias

(PhysOrg.com) -- 'Hot' nanocapsules can deliver targeted radiotherapy to individual organs, new research has shown.

A team, including Ben Davis and Malcolm Green of Oxford University’s Department of Chemistry, report in Nature Materials how they created a ‘cage’ out of a single-walled carbon nanotube and then filled this tube with molten radioactive metal halide salts.

Once the cage, and its cargo of salts, cooled the ends of the tube sealed to create a tiny radioactive nanocapsule with a ‘sugary’ outer surface that helps to improve its compatibility inside the body.

Using this method the team were able to create nanocapsules that could deliver a highly concentrated dose of radiation (800% ionizing dose per gram) of the kind needed for radiotherapy. They then used mice to test how these radioactive nanocapsules would be taken up by the body.

They found that the nanocapsules accumulated in the but not in the thyroid, stomach, or bladder as occurred with ‘free’ doses of radioactive salts introduced without first being encapsulated. Even after a week in the body the nanocapsules remained stable without any significant leaking of radiation beyond the lung.

Whilst a lot of further work would be needed to create a treatment for humans, it’s the first time that researchers have shown how such a nanocapsule system for targeted might be made to work inside the body.

As the accompanying News & Views article notes this demonstration shows that: ‘radiosurgery at the nanoscale, from within the human body may have moved a step closer from science fiction to clinical practice.’


Explore further

Nanotubes Enable New Approach to Cancer Radiotherapy

Provided by Oxford University
Citation: Nanocapsule delivers radiotherapy (2010, May 26) retrieved 15 September 2019 from https://phys.org/news/2010-05-nanocapsule-radiotherapy.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
0 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more