Major step ahead for cryptography

May 26, 2010
Major step ahead for cryptography

Imagine you could work out the answer to a question, without knowing what the question was. For example, suppose someone thinks of two numbers and then asks another person to work out their sum, without letting them know what the two numbers are. However, they are given an encryption of the two numbers but not told how to decrypt them.

Nigel Smart, Professor of Cryptology in the Department of Computer Science at the University of Bristol, will present a paper in Paris today, which makes a step towards a fully practical system to compute on encrypted data. The work could have wide ranging impact on areas as diverse as database access, electronic auctions and electronic voting.

Professor Smart said: "We will present a major improvement on a recent encryption scheme invented by IBM in 2009."

"Our scheme allows for computations to be performed on , so it may eventually allow for the creation of systems in which you can store data remotely in a secure manner and still be able to access it."

This system could be used in medical care research. Hospitals or drug companies could perform statistical calculations on their shared databases without needing to reveal information about the individual patients. This would enable more efficient research in medical care and drug testing, without compromising patient privacy.

As another example, imagine a person is participating in an but doesn't want the auctioneer to find out what their bid is in case it is used to encourage higher bids. Encrypted bids could be sent to the auctioneer and then, using a fully homomorphic scheme, the auctioneer could work out who won and what the winning bid was without learning what all the other bids were.

Alternatively in an electronic election all voters could encrypt their votes. The outcome of the election could then be computed by the returning officer whilst still ensuring the voter's privacy.

For nearly 30 years one cryptographic dream has been to come up with an for which you can "add" and "multiply" ciphertexts. Ciphertext is the encrypted result. This is a so-called fully homomorphic scheme. As soon as you can "add" and "multiply" you can compute any function.

Over the years many encryption schemes have been proposed which either have the "add" operation or the "multiply" operation, but not both.
It was one of the Holy Grail's of cryptography to find a scheme where you could perform both operations.

In 2009 Craig Gentry from IBM came up with the first scheme which simulataneously allows you to "add" and "multiply" ciphertexts. Gentry's scheme, although an amazing theoretical breakthrough is not practical.

In the paper to be presented, Professor Nigel Smart and Dr Frederik Vercauteren, from the Katholieke University Leuven in Belgium, have devised a way of simplifying Gentry's scheme so that it becomes more practical. Whilst the new scheme is not fully practical it is an important step along the way to forming a system which is truly practical.

Professor Smart and Dr Vercauteren's scheme also provides an intriguing new application of objects in an area of Pure Mathematics called Class Groups of Number Fields. Such objects have been studied in pure mathematics for around two century's with little possibility of impact on everyday life. This work is another example of the unexpected applicability of years of curiosity driven research.

The research is published at the 13th IACR workshop on Public Key Cryptography in Paris.

Explore further: Researcher Discovers Method to Fully Process Encrypted Data Without Knowing its Content

Related Stories

Cyber hacking could be a thing of the past

December 7, 2009

( -- High-profile websites are constantly under threat from hackers attempting to paralyse their websites but new research could make such attacks computationally impossible. This research will be one of the ...

Probing Question: How do Ponzi Schemes work?

July 2, 2009

Imagine the shock, the horror, and the sheer panic that would come with learning that the financial plan you’d sunk your life savings into was a sham, the financial experts you trusted were crooks, and all your money was ...

Recommended for you

New method analyzes corn kernel characteristics

November 17, 2017

An ear of corn averages about 800 kernels. A traditional field method to estimate the number of kernels on the ear is to manually count the number of rows and multiply by the number of kernels in one length of the ear. With ...

Optically tunable microwave antennas for 5G applications

November 16, 2017

Multiband tunable antennas are a critical part of many communication and radar systems. New research by engineers at the University of Bristol has shown significant advances in antennas by using optically induced plasmas ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

4 / 5 (1) May 26, 2010
It is obvious to me, working in industrial cyber security, that any system that uses either or both multiplication and addition on ENCRYPTED data will not be securely encryted.

Its a trade off. This system makes it a little harder to get the attackers hands on the real data once they get into a system, but it also requires that encryption algorithums are simplified in a PREDICTABLE manner, thus making it easier to decrypt the data if they happen to get their hands on it without actually getting into the system, such as a man in the middle attack. Other opions?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.