Studying Matter and Radiation from the Early Universe

April 12, 2010, Harvard-Smithsonian Center for Astrophysics
The South Pole Telescope. A new series of six papers using this facility study the nature of the matter and radiation in the early universe. Credit: South Pole Telescope Consortium

(PhysOrg.com) --Almost 400,000 years after the universe was created in the big bang, matter cooled sufficiently for neutral atoms to form, thereby allowing the pervasive light to propagate almost completely unhindered.

Today, that light bathes the universe. We see it as the (CMBR), and modern instruments study it intently to try to determine what happened right after the birth of the cosmos. Among other things, the light holds clues into how stars and subsequently formed and evolved. Galaxies tend to gather in clusters -- our own , for example, and its local group of neighboring galaxies are at the edge of the Virgo Cluster.

The intergalactic gas within clusters of galaxies is sometimes heated by shocks as it falls into the galaxies. That relatively dense, hot matter can scatter the primal light of the CMBR -- billions of years after the light was set free. Astronomers have been trying to search in maps of the CMBR for slightly fainter regions due to this effect, known as the Sunyaev-Zel'dovich Effect (S-Z Effect) after the theorists who first proposed its existence in 1970. In recent years, several groups have attempted to discover clusters of galaxies using the S-Z effect. Clusters found this way are interesting in themselves, and they also have valuable statistical properties for studies in cosmology.

CfA astronomers and a large international team of their colleagues have just published a landmark series of six observational papers on the S-Z Effect and related phenomena using results from the South Pole Telescope, a ten-meter-diameter submillimeter telescope located at the Amundsen-Scott South Pole station in Antarctica. Tony Stark, ChrisStubbs, Mark Brodwin, Ryan Foley, Andrea Loehr, Brain Stalder and Matt Ashby contributed to some or all of these papers.

The S-Z Effect itself was seen in twenty-one clusters of galaxies so far, sufficient to yield preliminary tests of cosmological models. Besides helping to confirm models of galaxy formation in the , it has enabled the astronomers to refine parameters of the big bang cosmology. The telescope has also detected and characterized 188 distant galaxies, and determined that 75% of them emit millimeter-wave radiation characteristic of galaxies dominated by massive black-holes at their nuclei, while the other 25% are dominated by dust emission from star formation. The team concludes that these latter objects represent the rarest and brightest members of the class of very early galaxies in the process of formation.

Other papers in this important series present an analysis of the variations in the CMBR itself, and optical distance measurements of the newly discovered galaxy clusters. The set of papers is an important advance in our understanding of the early universe, both of its matter (as seen in galaxies) and its radiation (as seen in the CMBR).

Explore further: Survey Reveals Building Block Process For Biggest Galaxies

Related Stories

Survey Reveals Building Block Process For Biggest Galaxies

April 12, 2006

A new study of the universe's most massive galaxy clusters shows how mergers play a critical role in their evolution. Astronomers used the twin Gemini Observatory instruments in Hawaii and Chile, and the Hubble Space Telescope ...

Antennae Galaxies

May 19, 2008

This image of the Antennae galaxies is the sharpest yet of this merging pair of galaxies. During the course of the collision, billions of stars will be formed. The brightest and most compact of these star birth regions are ...

Astronomers Find Hundreds of Young, Distant Galaxy Clusters

June 6, 2006

Astronomers have found the largest number of the most distant, youngest galaxy clusters yet, a feat that will help them observe the developing universe when it was less than half its current age and still in its formative ...

Massive galaxy cluster found 10 billion light years away

June 6, 2006

A University of Sussex astronomer is the lead researcher for a project that has led to the discovery of the most distant cluster of galaxies observed to date. The cluster, which is 10 billion light years from Earth, is also ...

Colliding galaxies make love, not war

October 17, 2006

A new Hubble image of the Antennae galaxies is the sharpest yet of this merging pair of galaxies. As the two galaxies smash together, billions of stars are born, mostly in groups and clusters of stars. The brightest and most ...

Recommended for you

Solar-powered rover approaching 5,000th Martian dawn

February 16, 2018

The sun will rise on NASA's solar-powered Mars rover Opportunity for the 5,000th time on Saturday, sending rays of energy to a golf-cart-size robotic field geologist that continues to provide revelations about the Red Planet.

Hubble sees Neptune's mysterious shrinking storm

February 15, 2018

Three billion miles away on the farthest known major planet in our solar system, an ominous, dark storm - once big enough to stretch across the Atlantic Ocean from Boston to Portugal - is shrinking out of existence as seen ...

Kepler scientists discover almost 100 new exoplanets

February 15, 2018

Based on data from NASA's K2 mission, an international team of scientists has confirmed nearly 100 new exoplanets. This brings the total number of new exoplanets found with the K2 mission up to almost 300.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.