Colliding galaxies make love, not war

October 17, 2006
Colliding Galaxies Make Love, Not War
This Hubble image of the Antennae galaxies is the sharpest yet of this merging pair of galaxies. As the two galaxies smash together, billions of stars are born, mostly in groups and clusters of stars. The brightest and most compact of these are called super star clusters. Credit: Credit: NASA, ESA, and B. Whitmore (Space Telescope Science Institute). Acknowledgement: James Long (ESA/Hubble).

A new Hubble image of the Antennae galaxies is the sharpest yet of this merging pair of galaxies. As the two galaxies smash together, billions of stars are born, mostly in groups and clusters of stars. The brightest and most compact of these are called super star clusters.

The Universe is an all-action arena for some of the largest, most slowly evolving dramas known to mankind. A new picture taken by the Advanced Camera for Surveys (ACS), onboard the NASA/ESA Hubble Space Telescope, shows the "best ever" view of the Antennae galaxies - seemingly a violent clash between a pair of once isolated galaxies, but in reality a fertile marriage. As the two galaxies interact, billions of stars are born, mostly in groups and clusters of stars. The brightest and most compact of these are called super star clusters.

The two spiral galaxies started to fuse together about 500 million years ago making the Antenna galaxies the nearest and youngest example of a pair of colliding galaxies. Nearly half of the faint objects in the Antennae are young clusters containing tens of thousands of stars. The orange blobs to the left and right of image centre are the two cores of the original galaxies and consist mainly of old stars criss-crossed by filaments of dark brown dust. The two galaxies are dotted with brilliant blue star-forming regions surrounded by pink hydrogen gas.

The image allows astronomers to better distinguish between the stars and super star clusters created in the collision of two spiral galaxies. The observations show that only about 10% of the newly formed super star clusters in the Antennae will live to see their ten millionth birthday. The vast majority of the super star clusters formed during this interaction will disperse, with the individual stars becoming part of the smooth background of the galaxy. It is however believed that about a hundred of the most massive clusters will survive to form regular globular clusters, similar to the globular clusters found in our own Milky Way galaxy.

The Antennae galaxies take their name from the long antenna-like "arms" extending far out from the nuclei of the two galaxies, best seen by ground-based telescopes. These "tidal tails" were formed during the initial encounter of the galaxies some 500 million years ago. The give us a preview of what may happen when our Milky Way galaxy likely collides with the neighbouring Andromeda Galaxy about 6 billion years from now.

Source: ESA/Hubble Information Centre

Explore further: Astronomers conduct detailed chemical analysis of eleven globular clusters

Related Stories

North, east, south, west: The many faces of Abell 1758

January 18, 2018

Resembling a swarm of flickering fireflies, this beautiful galaxy cluster glows intensely in the dark cosmos, accompanied by the myriad bright lights of foreground stars and swirling spiral galaxies. A1758N is a sub-cluster ...

Multiwavelength image of the 'Toothbrush' galaxy cluster

December 27, 2017

Most galaxies lie in clusters containing from a few to thousands of objects. Our Milky Way, for example, belongs to a cluster of about fifty galaxies called the Local Group whose other large member is the Andromeda galaxy ...

Image: Dwarf galaxy Kiso 5639

January 3, 2018

In this NASA/ESA Hubble Space Telescope image, a firestorm of star birth is lighting up one end of the dwarf galaxy Kiso 5639.

Recommended for you

New research challenges existing models of black holes

January 19, 2018

Chris Packham, associate professor of physics and astronomy at The University of Texas at San Antonio (UTSA), has collaborated on a new study that expands the scientific community's understanding of black holes in our galaxy ...

Neutron-star merger yields new puzzle for astrophysicists

January 18, 2018

The afterglow from the distant neutron-star merger detected last August has continued to brighten - much to the surprise of astrophysicists studying the aftermath of the massive collision that took place about 138 million ...

Meteoritic stardust unlocks timing of supernova dust formation

January 18, 2018

Dust is everywhere—not just in your attic or under your bed, but also in outer space. To astronomers, dust can be a nuisance by blocking the light of distant stars, or it can be a tool to study the history of our universe, ...

New technique for finding life on Mars

January 18, 2018

Researchers demonstrate for the first time the potential of existing technology to directly detect and characterize life on Mars and other planets. The study, published in Frontiers in Microbiology, used miniaturized scientific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.