The Key that Fits: New Technique To Trace Disease-Related Agents

March 5, 2010

(PhysOrg.com) -- In the development of new drugs, photoaffinity labels (PALs) are a versatile tool to investigate the interaction between a receptor and a drug or a ligand. Researchers working with Stephanie Grond at the University of Tübingen and Paultheo von Zezschwitz at the University of Marburg have now developed a new class of PALs that can be attached to the ligand in a single step, thus causing less modification of its structure, as they report in the European Journal of Organic Chemistry. The group has tested the new labels on an enzyme that is linked to osteoporosis and cancer.

When PALs are used to study a specific ligand, the ligand is firstly decorated with a chemical group that can be activated when exposed to , whereupon it irreversibly binds to the receptor to form a stable complex. This complex can then be thoroughly studied, e.g., by fragmentation of the receptor.

Typically, formation and fragmentation of the ligand-receptor complex is traced by monitoring special tags that are incorporated into the complex. However, these tags are problematic due to high costs and size restrictions, and frequently, the tagged fragments cannot be detected among the vast excess of untagged fragments. Therefore, any potential to study the complexes is lost. Finding new ways to separate the tagged fragments from the untagged ones is one of the major challenges facing scientists today.

Grond and von Zezschwitz, together with the help of their biology colleagues Markus Huss and Helmut Wieczorek at the University of Osnabrück, have been studying V-ATPase, which is an enzyme that has been linked to osteoporosis and some cancers, to determine its mode of inhibition.

To do so, they have developed a new fluorous photoaffinity label (F-PAL) that can be attached to the in one step, as both the activator and the tag are contained within the same compound. The F-PAL contains a long carbon chain that is fully substituted with fluorine atoms instead of the usual hydrogen atoms. By using a special separation technique that is specific to fluorine-containing compounds, compounds with a high fluorine content can be easily “fished out” from untagged compounds. Once the tagged fragments of the ligand-receptor complexes are isolated, they can be analyzed to unravel the exact function of the drug, which could give scientists some valuable insight into how diseases such as osteoporosis and cancer can be fought.

Explore further: Converting Nitrogen to a More Useful Form

More information: Stephanie Grond, et al., New Fluorous Photoaffinity Labels (F-PAL) and Their Application in V-ATPase Inhibition Studies, European Journal of Organic Chemistry, Permalink: dx.doi.org/10.1002/ejoc.200901463

Related Stories

Converting Nitrogen to a More Useful Form

January 9, 2007

Nitrogen-containing organic compounds are important products as well as intermediates for many pharmaceuticals, agrochemicals, and chemicals used in electronics. Air contains plenty of nitrogen, but it is in a form that cannot ...

Intrinsic changes in protein shape influence drug binding

August 19, 2009

Computational biologists at the University of Pittsburgh School of Medicine have shown that proteins have an intrinsic ability to change shape, and this is required for their biological activity. This shape-changing also ...

Research puts a 'Fas' to the cause of programmed cell death

September 30, 2009

Walter and Eliza Hall Institute researchers have put an end to a 10-year debate over which form of a molecular messenger called Fas ligand is responsible for killing cells during programmed cell death (also called apoptosis).

Targeting the molecular 'grip' of thrombosis

September 7, 2009

(PhysOrg.com) -- New research at The University of Nottingham could help prevent the harmful blood clots associated with heart disease and stroke, the single greatest cause of disease-related death worldwide.

Recommended for you

Scientific advances can make it easier to recycle plastics

November 17, 2017

Most of the 150 million tons of plastics produced around the world every year end up in landfills, the oceans and elsewhere. Less than 9 percent of plastics are recycled in the United States, rising to about 30 percent in ...

The spliceosome—now available in high definition

November 17, 2017

UCLA researchers have solved the high-resolution structure of a massive cellular machine, the spliceosome, filling the last major gap in our understanding of the RNA splicing process that was previously unclear.

Ionic 'solar cell' could provide on-demand water desalination

November 15, 2017

Modern solar cells, which use energy from light to generate electrons and holes that are then transported out of semiconducting materials and into external circuits for human use, have existed in one form or another for over ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.